// Numbas version: finer_feedback_settings {"name": "Evan Kurnia's copy of CLE6. True false", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "advice": "

See all the lectures and workshops from Week 0 to Week 3 and the module handbook.

", "parts": [{"scripts": {}, "unitTests": [], "shuffleChoices": true, "type": "m_n_x", "maxMarks": "0", "showCorrectAnswer": true, "choices": "{statements}", "extendBaseMarkingAlgorithm": true, "displayType": "radiogroup", "minAnswers": "{n}", "answers": ["

True

", "

False

"], "marks": 0, "matrix": "{marks}", "prompt": "

Which of the following are true and which are false? If you are unsure of something, find out the answer instead of guessing. A single error will result in a score 0 for the whole question. If you are unable to find out or understand the answer, you are welcome to ask me for help or advice.

", "variableReplacements": [], "customMarkingAlgorithm": "", "warningType": "none", "layout": {"expression": "", "type": "all"}, "showCellAnswerState": true, "shuffleAnswers": false, "maxAnswers": 0, "minMarks": 0, "variableReplacementStrategy": "originalfirst", "showFeedbackIcon": true}], "statement": "

This is a non-calculator question.

", "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

15 questions based on module so far. 

"}, "rulesets": {}, "variables": {"n": {"definition": "15", "templateType": "anything", "group": "change these", "name": "n", "description": ""}, "b": {"definition": "random(10..18)+random(1..9)/10", "templateType": "anything", "group": "change these", "name": "b", "description": ""}, "a": {"definition": "random(3..7)", "templateType": "anything", "group": "change these", "name": "a", "description": ""}, "max_mark": {"definition": "10", "templateType": "anything", "group": "change these", "name": "max_mark", "description": ""}, "digits": {"definition": "map(0,j,0..19)+map(1,j,0..19)", "templateType": "anything", "group": "do not change these", "name": "digits", "description": ""}, "c": {"definition": "random(6..9)", "templateType": "anything", "group": "change these", "name": "c", "description": ""}, "statements_true": {"definition": "[\"$\\\\log(a+b) \\\\neq \\\\log(a)+\\\\log(b)$\",\n \"$\\\\log(ab) = \\\\log(a)+\\\\log(b)$\",\n \"$\\\\log(a)-\\\\log(b) = \\\\log(\\\\frac{a}{b})$\",\n \"$-\\\\log(\\\\frac{a}{b}) = \\\\log(\\\\frac{b}{a})$\",\n \"$\\\\frac{\\\\log(a)}{\\\\log(b)} \\\\neq \\\\log(\\\\frac{a}{b})$\",\n \"$e^{a+b} \\\\neq e^{a} + e^{b}$\",\n \"$(e^a)^b = e^{ab}$\",\n \"$\\\\sin(0)=0 $\",\n \"$\\\\cos(0)=1 $\",\n \"$\\\\sin(\\\\pi)=0$\",\n \"$\\\\cos(\\\\pi)=-1 $\",\n \"$\\\\sin(\\\\frac{\\\\pi}{2})=1$\",\n \"$\\\\cos(\\\\frac{\\\\pi}{2})=0 $\",\n \"Starting from $(1,0)$, if you rotate by an angle of $\\\\theta$ anti-clockwise, the $x$-coordinate is $\\\\cos(\\\\theta)$\",\n \"When finding an angle using the sine rule, you have to think about if the angle is bigger or smaller than $90^{\\\\circ}$\"\n]\n ", "templateType": "anything", "group": "change these", "name": "statements_true", "description": ""}, "statements": {"definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)", "templateType": "anything", "group": "do not change these", "name": "statements", "description": ""}, "statements_false": {"definition": "[\"$\\\\log(a+b) = \\\\log(a)+\\\\log(b)$\",\n \"$\\\\log(ab) \\\\neq \\\\log(a) + \\\\log(b)$\",\n \"$\\\\log(a)-\\\\log(b) = \\\\log(a-b)$\",\n \"$-\\\\log(\\\\frac{a}{b}) \\\\neq \\\\log(\\\\frac{b}{a})$\",\n \"$\\\\frac{\\\\log(a)}{\\\\log(b)} \\\\neq \\\\log_a(b)$\",\n \"$e^{a+b} = e^{a} + e^{b}$\",\n \"$(e^a)^b \\\\neq e^{ab}$\",\n \"$\\\\sin(0)=1 $\",\n \"$\\\\cos(0)=0 $\",\n \"$\\\\sin(\\\\pi)=-1$\",\n \"$\\\\cos(\\\\pi)=0 $\",\n \"$\\\\sin(\\\\frac{\\\\pi}{2})=0$\",\n \"$\\\\cos(\\\\frac{\\\\pi}{2})=1 $\",\n \"Starting from $(1,0)$, if you rotate by an angle of $\\\\theta$ anti-clockwise, the $x$-coordinate is $\\\\sin(\\\\theta)$\",\n \"When finding an angle using the sine rule, there is nothing significant to watch out for\"\n]", "templateType": "anything", "group": "change these", "name": "statements_false", "description": ""}, "n_true": {"definition": "random(1..n-1)", "templateType": "anything", "group": "do not change these", "name": "n_true", "description": ""}, "rand": {"definition": "vector(map(digits[n_true+19-j],j,0..(n-1)))", "templateType": "anything", "group": "do not change these", "name": "rand", "description": ""}, "marks": {"definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark],[-max_mark,max_mark/n]),j,0..n-1))\n", "templateType": "anything", "group": "do not change these", "name": "marks", "description": ""}}, "name": "Evan Kurnia's copy of CLE6. True false", "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [{"name": "change these", "variables": ["statements_true", "statements_false", "max_mark", "n", "b", "a", "c"]}, {"name": "do not change these", "variables": ["n_true", "digits", "rand", "statements", "marks"]}], "extensions": [], "ungrouped_variables": [], "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "Evan Kurnia Alim", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2991/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}, {"name": "Evan Kurnia Alim", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2991/"}]}