// Numbas version: exam_results_page_options {"name": "Differentiation: Cubic Stationary Points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "gaps": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "showFeedbackIcon": true, "unitTests": [], "marks": "2", "variableReplacements": [], "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "answer": "{3*a}*x^2+{2*b}*x+{c}", "customMarkingAlgorithm": "", "showPreview": true, "checkVariableNames": false, "answerSimplification": "std", "expectedVariableNames": [], "checkingType": "absdiff"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "showFeedbackIcon": true, "unitTests": [], "marks": "2", "variableReplacements": [], "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "answer": "{6*a}*x+{2*b}", "customMarkingAlgorithm": "", "showPreview": true, "checkVariableNames": false, "answerSimplification": "std", "expectedVariableNames": [], "checkingType": "absdiff"}], "unitTests": [], "prompt": "

First differentiate:

\n

\n

$f'(x)=$ [[0]]

\n

\n

$f''(x)=$ [[1]]

\n

\n

", "marks": 0, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "customMarkingAlgorithm": ""}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "scripts": {}, "showFeedbackIcon": true, "gaps": [{"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "showFeedbackIcon": true, "unitTests": [], "marks": "3", "variableReplacements": [], "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "answer": "{mx*r2}+{(1-mx)}*{(r1)}/{(3*a)}", "customMarkingAlgorithm": "", "showPreview": true, "checkVariableNames": false, "answerSimplification": "all", "expectedVariableNames": [], "checkingType": "absdiff"}, {"showCorrectAnswer": true, "variableReplacementStrategy": "originalfirst", "type": "jme", "scripts": {}, "vsetRange": [0, 1], "checkingAccuracy": 0.001, "showFeedbackIcon": true, "unitTests": [], "marks": "3", "variableReplacements": [], "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "answer": "{mn*r2}+{(1-mn)}*{(r1)}/{(3*a)}", "customMarkingAlgorithm": "", "showPreview": true, "checkVariableNames": false, "answerSimplification": "all", "expectedVariableNames": [], "checkingType": "absdiff"}], "unitTests": [], "prompt": "

Solve the equation  $f'(x)=0$, and hence find:

\n

\n

The $x$-coordinate of the stationary point giving a minimum $=$ [[0]]

\n

\n

The $x$-coordinate of the stationary point giving a maximum $=$ [[1]]

", "marks": 0, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false, "customMarkingAlgorithm": ""}], "tags": [], "variable_groups": [], "ungrouped_variables": ["a", "c", "b", "r1", "r2", "mn", "d", "lg2", "lg1", "type1", "mx", "type2", "f1", "f2"], "variables": {"type2": {"name": "type2", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "if(mx=1, 'maximum','minimum')"}, "type1": {"name": "type1", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "if(mx=0, 'maximum','minimum')"}, "lg2": {"name": "lg2", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "if(mx=0,'$\\\\gt$','$\\\\lt$')"}, "f1": {"name": "f1", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "(-(2{b})-sqrt((2{b})^2-4(3{a}){c}))/(6{a})"}, "d": {"name": "d", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(-10..10)"}, "b": {"name": "b", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "round(-(3*a*r2+r1)/2)"}, "lg1": {"name": "lg1", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "if(mx=0,'$\\\\lt$','$\\\\gt$')"}, "c": {"name": "c", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "r1*r2"}, "r2": {"name": "r2", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(-6..6 except 0)"}, "mx": {"name": "mx", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "if(3a*r2+b<0,0,1)"}, "r1": {"name": "r1", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(-4..4#2 except 0)-3*a*r2"}, "f2": {"name": "f2", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "(-(2{b})+sqrt((2{b})^2-4(3{a}){c}))/(6{a})"}, "a": {"name": "a", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "random(-2,-1)"}, "mn": {"name": "mn", "description": "", "group": "Ungrouped variables", "templateType": "anything", "definition": "if(3a*r2+b<0,1,0)"}}, "advice": "

On differentiating we get $\\displaystyle \\frac{df}{dx}=\\simplify[std]{{3*a}x^2+{2*b}x+{c}}$.

\n

To find the stationary points we have to solve $\\displaystyle \\frac{df}{dx}=0$ for $x$.

\n

So we have to solve $\\simplify[std]{{3*a}x^2+{2*b}x+{c}=0}$.

\n

Note that the quadratic factorises and the equation becomes $\\simplify[std]{({3a}x-{r1})(x-{r2})=0}$.

\n

Hence we have two stationary points: $x=\\simplify[std]{{r1}/{3a}}$ and $x=\\var{r2}$.

\n

To find out the types of these stationary points we look at the sign of $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6a}*x+{2*b}}$ at  the stationary points.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\lt 0 $ at a stationary point then it is a MAXIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\gt 0 $ at a stationary point then it is a MINIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} = 0 $ at a stationary point then we have to do more work!

\n

At $x=\\var{r2}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6*a*r2+2*b}}${lg1}$0$ hence is a {type1}.

\n

At $\\displaystyle x=\\simplify[std]{{r1}/{3a}}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{2*r1+2*b}}${lg2}$0$ hence is a {type2}.

\n

 

", "name": "Differentiation: Cubic Stationary Points", "preamble": {"css": "", "js": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Finding the stationary points of a cubic with two turning points

"}, "rulesets": {"std": ["all", "fractionNumbers", "!noLeadingMinus", "!collectNumbers"]}, "statement": "

Find the coordinates of the stationary points of the function:

\n

\n

$f(x)=\\simplify[all,!collectNumbers,!noleadingminus]{{a}x^3+{b}x^2+{c}x+{d}}$

\n

\n

", "functions": {}, "type": "question", "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}, {"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}]}], "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}, {"name": "Katie Lester", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/586/"}]}