// Numbas version: exam_results_page_options {"name": "Clare's copy of Applications of differentiation 2", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

Find the coordinates of the stationary points of the function.

", "variable_groups": [], "question_groups": [{"questions": [], "name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0}], "advice": "

On differentiating we get $\\displaystyle \\frac{df}{dx}=\\simplify[std]{{3*a}x^2+{2*b}x+{c}}$.

\n

To find the stationary points we have to solve $\\displaystyle \\frac{df}{dx}=0$ for $x$.

\n

So we have to solve $\\simplify[std]{{3*a}x^2+{2*b}x+{c}=0}$.

\n

Note that the quadratic factorises and the equation becomes $\\simplify[std]{({3a}x-{r1})(x-{r2})=0}$.

\n

Hence we have two stationary points: $x=\\simplify[std]{{r1}/{3a}}$ and $x=\\var{r2}$.

\n

To find out the types of these stationary points we look at the sign of $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6a}*x+{2*b}}$ at  the stationary points.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\lt 0 $ at a stationary point then it is a MAXIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\gt 0 $ at a stationary point then it is a MINIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} = 0 $ at a stationary point then we have to do more work!

\n

At $x=\\var{r2}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6*a*r2+2*b}}${lg1}$0$ hence is a {type1}.

\n

At $\\displaystyle x=\\simplify[std]{{r1}/{3a}}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{2*r1+2*b}}${lg2}$0$ hence is a {type2}.

\n

 

", "tags": ["stationary points"], "name": "Clare's copy of Applications of differentiation 2", "functions": {}, "parts": [{"variableReplacements": [], "type": "gapfill", "variableReplacementStrategy": "originalfirst", "marks": 0, "scripts": {}, "prompt": "

$f(x)=\\simplify[all,!collectNumbers,!noleadingminus]{{a}x^3+{b}x^2+{c}x+{d}}$

\n

$f'(x)=$ [[2]]

\n

$f''(x)=$ [[3]]

\n

\n

Find when $f'(x)=0$, hence find:

\n

$x$-coordinate of the stationary point giving a minimum $=$ [[0]]

\n

$x$-coordinate of the stationary point giving a maximum $=$ [[1]]

", "showCorrectAnswer": true, "gaps": [{"variableReplacements": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "vsetrangepoints": 5, "checkvariablenames": false, "showCorrectAnswer": true, "answer": "{mx*r2}+{(1-mx)}*{(r1)}/{(3*a)}", "variableReplacementStrategy": "originalfirst", "showpreview": true, "type": "jme", "answersimplification": "std", "marks": 1, "expectedvariablenames": [], "scripts": {}, "checkingtype": "absdiff"}, {"variableReplacements": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "vsetrangepoints": 5, "checkvariablenames": false, "showCorrectAnswer": true, "answer": "{mn*r2}+{(1-mn)}*{(r1)}/{(3*a)}", "variableReplacementStrategy": "originalfirst", "showpreview": true, "type": "jme", "answersimplification": "std", "marks": 1, "expectedvariablenames": [], "scripts": {}, "checkingtype": "absdiff"}, {"variableReplacements": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "vsetrangepoints": 5, "checkvariablenames": false, "showCorrectAnswer": true, "answer": "3{a}x^2+2{b}x+{c}", "variableReplacementStrategy": "originalfirst", "showpreview": true, "type": "jme", "answersimplification": "all", "marks": "1", "expectedvariablenames": [], "scripts": {}, "checkingtype": "absdiff"}, {"variableReplacements": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "vsetrangepoints": 5, "checkvariablenames": false, "showCorrectAnswer": true, "answer": "6{a}x+2{b}", "variableReplacementStrategy": "originalfirst", "showpreview": true, "type": "jme", "answersimplification": "all", "marks": "1", "expectedvariablenames": [], "scripts": {}, "checkingtype": "absdiff"}]}], "showQuestionGroupNames": false, "variables": {"c": {"description": "", "definition": "r1*r2", "name": "c", "group": "Ungrouped variables", "templateType": "anything"}, "d": {"description": "", "definition": "random(-10..10)", "name": "d", "group": "Ungrouped variables", "templateType": "anything"}, "f2": {"description": "", "definition": "(-(2{b})+sqrt((2{b})^2-4(3{a}){c}))/(6{a})", "name": "f2", "group": "Ungrouped variables", "templateType": "anything"}, "mx": {"description": "", "definition": "if(3a*r2+b<0,0,1)", "name": "mx", "group": "Ungrouped variables", "templateType": "anything"}, "lg2": {"description": "", "definition": "if(mx=0,'$\\\\gt$','$\\\\lt$')", "name": "lg2", "group": "Ungrouped variables", "templateType": "anything"}, "r2": {"description": "", "definition": "random(-6..6 except 0)", "name": "r2", "group": "Ungrouped variables", "templateType": "anything"}, "r1": {"description": "", "definition": "random(-4..4#2 except 0)-3*a*r2", "name": "r1", "group": "Ungrouped variables", "templateType": "anything"}, "type1": {"description": "", "definition": "if(mx=0, 'maximum','minimum')", "name": "type1", "group": "Ungrouped variables", "templateType": "anything"}, "lg1": {"description": "", "definition": "if(mx=0,'$\\\\lt$','$\\\\gt$')", "name": "lg1", "group": "Ungrouped variables", "templateType": "anything"}, "type2": {"description": "", "definition": "if(mx=1, 'maximum','minimum')", "name": "type2", "group": "Ungrouped variables", "templateType": "anything"}, "b": {"description": "", "definition": "round(-(3*a*r2+r1)/2)", "name": "b", "group": "Ungrouped variables", "templateType": "anything"}, "f1": {"description": "", "definition": "(-(2{b})-sqrt((2{b})^2-4(3{a}){c}))/(6{a})", "name": "f1", "group": "Ungrouped variables", "templateType": "anything"}, "mn": {"description": "", "definition": "if(3a*r2+b<0,1,0)", "name": "mn", "group": "Ungrouped variables", "templateType": "anything"}, "a": {"description": "", "definition": "random(-2..2 except 0)", "name": "a", "group": "Ungrouped variables", "templateType": "anything"}}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Finding the stationary points of a cubic with two turning points

", "notes": "", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["a", "c", "b", "r1", "r2", "mn", "d", "lg2", "lg1", "type1", "mx", "type2", "f1", "f2"], "preamble": {"css": "", "js": ""}, "type": "question", "rulesets": {"std": ["all", "fractionNumbers", "!noLeadingMinus", "!collectNumbers"]}, "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}]}]}], "contributors": [{"name": "cormac breen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/306/"}, {"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}]}