// Numbas version: exam_results_page_options {"name": "Adrian's copy of Ann's copy of Solve an equation with reciprocals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "preventleave": false, "showfrontpage": false}, "question_groups": [{"questions": [{"statement": "\n

Solve the following equation for $x$.

\n

Input your answer as a fraction or an integer as appropriate and not as a decimal.

\n ", "type": "question", "name": "Adrian's copy of Ann's copy of Solve an equation with reciprocals", "metadata": {"description": "

Solve for $x$: $\\displaystyle \\frac{s}{ax+b} = \\frac{t}{cx+d}$

", "licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t \t\t\t\t\t\t \t\t \t\t\t\t \n \t\t"}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "showQuestionGroupNames": false, "ungrouped_variables": ["a", "c", "b", "d", "s", "t", "an2", "an1"], "variablesTest": {"maxRuns": 100, "condition": ""}, "question_groups": [{"questions": [], "name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered"}], "variables": {"a": {"description": "", "name": "a", "templateType": "anything", "definition": "random(2..9 except [s,abs(b)])", "group": "Ungrouped variables"}, "an1": {"description": "", "name": "an1", "templateType": "anything", "definition": "b*t-s*d", "group": "Ungrouped variables"}, "t": {"description": "", "name": "t", "templateType": "anything", "definition": "random(2..8 except s)", "group": "Ungrouped variables"}, "c": {"description": "", "name": "c", "templateType": "anything", "definition": "random(2..9 except [s,abs(d),a*t/s])", "group": "Ungrouped variables"}, "s": {"description": "", "name": "s", "templateType": "anything", "definition": "random(2..8)", "group": "Ungrouped variables"}, "d": {"description": "", "name": "d", "templateType": "anything", "definition": "random(-9..9 except [0,t])", "group": "Ungrouped variables"}, "b": {"description": "", "name": "b", "templateType": "anything", "definition": "random(-9..9 except [0,s])", "group": "Ungrouped variables"}, "an2": {"description": "", "name": "an2", "templateType": "anything", "definition": "s*c-a*t", "group": "Ungrouped variables"}}, "advice": "

Rearrange the equation by cross-multiplying to get:
\$\\simplify{{s}*({c} * x + {d}) = {t} *({a} * x + {b})}\$
Multiply out to get \$\\simplify{{s*c}*x+{s*d}={t*a}*x+{t*b}}.\$ Now this is a linear equation which is solved in the following steps: \$\\simplify{{s*c-t*a}*x={t*b-s*d}}\$ and then \$\\simplify{x={t*b-s*d}/{s*c-t*a}}.\$

", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "changing the subject of an equation", "checked2015", "rearranging equations", "SFY0001", "solving", "solving equations", "subject of an equation"], "variable_groups": [], "functions": {}, "parts": [{"marks": 0, "prompt": "\n

\$\\simplify{{s} / ({a} * x + {b}) = {t} / ({c} * x + {d})}\$

\n

$x=\\;$ [[0]]

\n

If you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.

\n \n \n ", "showCorrectAnswer": true, "steps": [{"marks": 0, "type": "information", "showCorrectAnswer": true, "scripts": {}, "prompt": "\n

Rearrange the equation by cross-multiplying to get:
\$\\simplify{{s}*({c} * x + {d}) = {t} *({a} * x + {b})}\$
Multiply out to get \$\\simplify{{s*c}*x+{s*d}={t*a}*x+{t*b}}.\$ Now solve this linear equation.

\n \n "}], "type": "gapfill", "scripts": {}, "stepsPenalty": 1, "gaps": [{"marks": 2, "type": "jme", "answersimplification": "std", "scripts": {}, "vsetrangepoints": 5, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "checkvariablenames": false, "checkingaccuracy": 0.0001, "notallowed": {"message": "

Input as a fraction or an integer, not as a decimal.

", "strings": ["."], "partialCredit": 0, "showStrings": false}, "answer": "{an1}/{an2}", "vsetrange": [0, 1], "showpreview": true}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ann Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2295/"}, {"name": "Adrian Martin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3011/"}], "preamble": {"js": "", "css": ""}}], "pickingStrategy": "all-ordered"}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ann Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2295/"}, {"name": "Adrian Martin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3011/"}]}