// Numbas version: finer_feedback_settings {"name": "Adrian's copy of Ann's copy of Solve an equation with reciprocals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "showQuestionGroupNames": false, "preamble": {"css": "", "js": ""}, "parts": [{"steps": [{"marks": 0, "type": "information", "prompt": "\n

Rearrange the equation by cross-multiplying to get:
\\[\\simplify{{s}*({c} * x + {d}) = {t} *({a} * x + {b})}\\]
Multiply out to get \\[\\simplify{{s*c}*x+{s*d}={t*a}*x+{t*b}}.\\] Now solve this linear equation.

\n \n ", "scripts": {}, "showCorrectAnswer": true}], "prompt": "\n

\\[\\simplify{{s} / ({a} * x + {b}) = {t} / ({c} * x + {d})}\\]

\n

$x=\\;$ [[0]]

\n

If you want help in solving the equation, click on Show steps. If you do so then you will lose 1 mark.

\n \n \n ", "scripts": {}, "type": "gapfill", "marks": 0, "showCorrectAnswer": true, "stepsPenalty": 1, "gaps": [{"scripts": {}, "showpreview": true, "checkvariablenames": false, "showCorrectAnswer": true, "vsetrange": [0, 1], "notallowed": {"message": "

Input as a fraction or an integer, not as a decimal.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "answer": "{an1}/{an2}", "type": "jme", "checkingtype": "absdiff", "expectedvariablenames": [], "marks": 2, "checkingaccuracy": 0.0001, "answersimplification": "std", "vsetrangepoints": 5}]}], "variable_groups": [], "ungrouped_variables": ["a", "c", "b", "d", "s", "t", "an2", "an1"], "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "name": "", "pickQuestions": 0}], "name": "Adrian's copy of Ann's copy of Solve an equation with reciprocals", "variables": {"b": {"name": "b", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(-9..9 except [0,s])"}, "a": {"name": "a", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(2..9 except [s,abs(b)])"}, "t": {"name": "t", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(2..8 except s)"}, "c": {"name": "c", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(2..9 except [s,abs(d),a*t/s])"}, "d": {"name": "d", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(-9..9 except [0,t])"}, "s": {"name": "s", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "random(2..8)"}, "an1": {"name": "an1", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "b*t-s*d"}, "an2": {"name": "an2", "group": "Ungrouped variables", "description": "", "templateType": "anything", "definition": "s*c-a*t"}}, "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "changing the subject of an equation", "checked2015", "rearranging equations", "SFY0001", "solving", "solving equations", "subject of an equation"], "type": "question", "statement": "\n

Solve the following equation for $x$.

\n

Input your answer as a fraction or an integer as appropriate and not as a decimal.

\n ", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "\n \t\t \t\t\t\t\t\t \t\t \t\t\t\t \n \t\t", "description": "

Solve for $x$: $\\displaystyle \\frac{s}{ax+b} = \\frac{t}{cx+d}$

"}, "functions": {}, "advice": "

Rearrange the equation by cross-multiplying to get:
\\[\\simplify{{s}*({c} * x + {d}) = {t} *({a} * x + {b})}\\]
Multiply out to get \\[\\simplify{{s*c}*x+{s*d}={t*a}*x+{t*b}}.\\] Now this is a linear equation which is solved in the following steps: \\[\\simplify{{s*c-t*a}*x={t*b-s*d}}\\] and then \\[\\simplify{x={t*b-s*d}/{s*c-t*a}}.\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ann Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2295/"}, {"name": "Adrian Martin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3011/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ann Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2295/"}, {"name": "Adrian Martin", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3011/"}]}