// Numbas version: finer_feedback_settings {"name": "Construir la tabla de verdad para una proposici\u00f3n compuesta....", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Construir la tabla de verdad para una proposici\u00f3n compuesta....", "tags": [], "metadata": {"description": "

Crear una tabla de verdad para una expresión lógica de la forma:

\n

$$(a \\ {op1}\\,\\  b) \\ {op2}\\,\\ (c \\ {op3} \\,\\ d)$$

\n

donde $a, \\;b,\\;c,\\;d$ pueden variables booleanas $p,\\;q,\\;\\neg p,\\;\\neg q$  y cada operador  $\\operatorname{op1},\\;\\operatorname{op2},\\;\\operatorname{op3}$  es uno de los conectivos $\\lor,\\;\\land,\\;\\to$.

\n

Por ejemplo: $(p \\lor \\neg q) \\land(q \\to \\neg p)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

En la siguiente pregunta se pide que construya una tabla de verdad para:

\n

\\[(\\var{a} \\var{op} \\var{b})\\var{op1}(\\var{a1} \\var{op2} \\var{b1}).\\]

\n

Ingrese V si es verdadero, de lo contrario ingrese F.

\n

\n

\n

\n

\n

\n

\n

\n

\n

\n

\n

", "advice": "
\n
\n
\n
\n
\n
\n
\n\n
\n
\n
\n
\n
\n
\n
\n
\n
Primero encontramos la tabla de verdad para  $\\var{a} \\var{op} \\var{b}$:
\n
\n
\n
\n
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$p$$q$$\\var{a} \\var{op} \\var{b}$
$\\var{disp[0]}$$\\var{disq[0]}$$\\var{ev1[0]}$
$\\var{disp[1]}$$\\var{disq[1]}$$\\var{ev1[1]}$
$\\var{disp[2]}$$\\var{disq[2]}$$\\var{ev1[2]}$
$\\var{disp[3]}$$\\var{disq[3]}$$\\var{ev1[3]}$
\n

Entonces la tabla de verdad para $\\var{a1} \\var{op2} \\var{b1}$ es:

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$p$$q$$\\var{a1} \\var{op2} \\var{b1}$
$\\var{disp[0]}$$\\var{disq[0]}$$\\var{ev2[0]}$
$\\var{disp[1]}$$\\var{disq[1]}$$\\var{ev2[1]}$
$\\var{disp[2]}$$\\var{disq[2]}$$\\var{ev2[2]}$
$\\var{disp[3]}$$\\var{disq[3]}$$\\var{ev2[3]}$
\n

Colocando todo junto en una tabla para encontrar $(\\var{a} \\var{op} \\var{b})\\var{op1}(\\var{a1} \\var{op2} \\var{b1})$:

\n

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$\\var{a} \\var{op} \\var{b}$$\\var{a1} \\var{op2} \\var{b1}$$(\\var{a} \\var{op} \\var{b})\\var{op1}(\\var{a1} \\var{op2} \\var{b1})$
$\\var{ev1[0]}$$\\var{ev2[0]}$$\\var{t_value[0]}$
$\\var{ev1[1]}$$\\var{ev2[1]}$$\\var{t_value[1]}$
$\\var{ev1[2]}$$\\var{ev2[2]}$$\\var{t_value[2]}$
$\\var{ev1[3]}$$\\var{ev2[3]}$$\\var{t_value[3]}$
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"pre_ev2": {"name": "pre_ev2", "group": "Second Bracket", "definition": "map(evaluate(convch(a1)+\" \"+conv(op2)+\" \"+convch(b1),[p[t],q[t]]),t,0..3)", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Truth values", "definition": "[true,false,true,false]", "description": "", "templateType": "anything", "can_override": false}, "t_value": {"name": "t_value", "group": "Ungrouped variables", "definition": "bool_to_label(map(evaluate(pre_ev1[t]+\" \"+conv(op1)+\" \"+pre_ev2[t],[]),t,0..3))", "description": "", "templateType": "anything", "can_override": false}, "ev2": {"name": "ev2", "group": "Second Bracket", "definition": "bool_to_label(pre_ev2)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "First Bracket", "definition": "latex(latex_symbol_list[s[1]])", "description": "", "templateType": "anything", "can_override": false}, "s": {"name": "s", "group": "Lists of symbols", "definition": "repeat(random(0..3),4)", "description": "", "templateType": "anything", "can_override": false}, "latex_symbol_list": {"name": "latex_symbol_list", "group": "Lists of symbols", "definition": "[\"p\",\"q\",\"\\\\neg p\",\"\\\\neg q\"]", "description": "", "templateType": "anything", "can_override": false}, "ev1": {"name": "ev1", "group": "First Bracket", "definition": "bool_to_label(pre_ev1)", "description": "", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Second Bracket", "definition": "latex(latex_symbol_list[s[2]])", "description": "", "templateType": "anything", "can_override": false}, "disq": {"name": "disq", "group": "Truth values", "definition": "bool_to_label(q)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "First Bracket", "definition": "latex(latex_symbol_list[s[0]])", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Second Bracket", "definition": "latex(latex_symbol_list[s[3]])", "description": "", "templateType": "anything", "can_override": false}, "op1": {"name": "op1", "group": "Ungrouped variables", "definition": "latex(random(\"\\\\lor\",\"\\\\land\",\"\\\\to\"))", "description": "", "templateType": "anything", "can_override": false}, "disp": {"name": "disp", "group": "Truth values", "definition": "bool_to_label(p)", "description": "", "templateType": "anything", "can_override": false}, "logic_symbol_list": {"name": "logic_symbol_list", "group": "Lists of symbols", "definition": "[\"p\",\"q\",\"not p\",\"not q\"]", "description": "", "templateType": "anything", "can_override": false}, "op2": {"name": "op2", "group": "Second Bracket", "definition": "latex(random(\"\\\\lor\",\"\\\\land\",\"\\\\to\"))", "description": "", "templateType": "anything", "can_override": false}, "p": {"name": "p", "group": "Truth values", "definition": "[true,true,false,false]", "description": "", "templateType": "anything", "can_override": false}, "pre_ev1": {"name": "pre_ev1", "group": "First Bracket", "definition": "map(evaluate(convch(a)+\" \"+conv(op)+\" \"+convch(b),[p[t],q[t]]),t,0..3)", "description": "", "templateType": "anything", "can_override": false}, "op": {"name": "op", "group": "First Bracket", "definition": "latex(random(\"\\\\lor\",\"\\\\land\",\"\\\\to\"))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "a1 <>b1 and\nif(a='p' or a='\\\\neg p',b=random('q','\\\\neg q'),b=random('p','\\\\neg p'))\n", "maxRuns": "150"}, "ungrouped_variables": ["op1", "t_value"], "variable_groups": [{"name": "Lists of symbols", "variables": ["logic_symbol_list", "latex_symbol_list", "s"]}, {"name": "First Bracket", "variables": ["a", "b", "op", "pre_ev1", "ev1"]}, {"name": "Second Bracket", "variables": ["a1", "b1", "op2", "pre_ev2", "ev2"]}, {"name": "Truth values", "variables": ["p", "q", "disp", "disq"]}], "functions": {"convch": {"parameters": [["ch", "string"]], "type": "string", "language": "jme", "definition": "switch(ch=\"\\\\neg p\",\"not p[t]\",ch=\"\\\\neg q\",\"not q[t]\",ch=\"p\",\"p[t]\",\"q[t]\")"}, "evaluate": {"parameters": [["expr", "string"], ["dependencies", "list"]], "type": "number", "language": "javascript", "definition": "return scope.evaluate(expr);"}, "bool_to_label": {"parameters": [["l", "list"]], "type": "number", "language": "jme", "definition": "map(if(l[x],'V','F'),x,0..length(l)-1)"}, "conv": {"parameters": [["op", "string"]], "type": "string", "language": "jme", "definition": "switch(op=\"\\\\land\",\"and\",op=\"\\\\lor\",\"or\",\"implies\")"}}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "
\n
\n
\n
\n
\n
\n
\n\n
\n
\n
\n
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$p$$q$$\\var{a} \\var{op} \\var{b}$$\\var{a1} \\var{op2} \\var{b1}$$(\\var{a} \\var{op} \\var{b}) \\var{op1} (\\var{a1} \\var{op2} \\var{b1})$
$\\var{disp[0]}$$\\var{disq[0]}$[[0]][[4]][[8]]
$\\var{disp[1]}$$\\var{disq[1]}$[[1]][[5]][[9]]
$\\var{disp[2]}$$\\var{disq[2]}$[[2]][[6]][[10]]
$\\var{disp[3]}$$\\var{disq[3]}$[[3]][[7]][[11]]
", "gaps": [{"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev1[0]}", "displayAnswer": "{ev1[0]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev1[1]}", "displayAnswer": "{ev1[1]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev1[2]}", "displayAnswer": "{ev1[2]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev1[3]}", "displayAnswer": "{ev1[3]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev2[0]}", "displayAnswer": "{ev2[0]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev2[1]}", "displayAnswer": "{ev2[1]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev2[2]}", "displayAnswer": "{ev2[2]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{ev2[3]}", "displayAnswer": "{ev2[3]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{t_value[0]}", "displayAnswer": "{t_value[0]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{t_value[1]}", "displayAnswer": "{t_value[1]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{t_value[2]}", "displayAnswer": "{t_value[2]}", "matchMode": "regex"}, {"type": "patternmatch", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{t_value[3]}", "displayAnswer": "{t_value[3]}", "matchMode": "regex"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}