// Numbas version: finer_feedback_settings
{"name": "Luis's copy of How to enter functions - Getting Started", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "
Correct inputs for these questions are as follows, although there may be other correct ways of inputting these:
\na)
\n\n sin(cos({a}x)+{b})
\n cos(sin({a}x + {b}))
\n
\nb)
\n\n abs((x + {c}) / (x + {d}))
\n ln(abs((x + {a}) / (x + {d})))
\n
\nc)
\n\n {a}t^({-b})*e^({-c}t)*sin({b}t) + (t + {d}t ^ 3)*e ^ ({c}t)
\n arctan(({c}y ^ 2 + {d}) / ((y + {a})*(y + {b})))
\n
", "ungrouped_variables": ["a", "c", "b", "d"], "statement": "FUNCTIONS
\n\n- The Numbas system recognises all standard functions but you must use brackets for the arguments of the functions, e.g.
sin(x)
not sinx
, ln(a)
not lna
. \n- The absolute value function is written
abs(a)
. \n- $\\arcsin(x)$, $\\arccos(x)$ and $\\arctan(x)$ are all recognized as the standard inverse trig functions, and you input them as they are written.
\n
\nHere are some examples for you to try:
\n(If you want help, press Reveal Answers to see correct inputs in the Advice section.)
", "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": ["arctan", "brackets", "checked2015", "functions", "input", "introduction", "Numbas", "numbas", "standard functions"], "extensions": [], "metadata": {"description": "Dealing with functions in Numbas.
", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"marks": 0, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "prompt": "Input:
\n\n- $\\sin(\\cos(\\var{a}x)+\\var{b})$: [[0]]
\n- $\\cos(\\sin(\\var{b}x)+\\var{a})$: [[1]]
\n
", "gaps": [{"failureRate": 1, "marks": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPreview": true, "answer": "sin(cos({a}x)+{b})", "variableReplacements": [], "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "vsetRange": [0, 1], "checkingType": "absdiff", "type": "jme", "extendBaseMarkingAlgorithm": true, "unitTests": [], "checkVariableNames": true, "showFeedbackIcon": true, "expectedVariableNames": ["x"], "answerSimplification": "all", "scripts": {}}, {"failureRate": 1, "marks": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPreview": true, "answer": "cos(sin({b}x)+{a})", "variableReplacements": [], "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "vsetRange": [0, 1], "checkingType": "absdiff", "type": "jme", "extendBaseMarkingAlgorithm": true, "unitTests": [], "checkVariableNames": false, "showFeedbackIcon": true, "expectedVariableNames": [], "answerSimplification": "all", "scripts": {}}], "variableReplacements": [], "sortAnswers": false, "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "unitTests": [], "scripts": {}}, {"marks": 0, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "prompt": "Input:
\n\n- $\\displaystyle \\simplify[all]{Abs((x + {c}) / (x + {d}))}$: [[0]]
\n- $\\displaystyle \\simplify[all]{ln(Abs((x + {a}) / (x + {d})))}$: [[1]]
\n
", "gaps": [{"failureRate": 1, "marks": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPreview": true, "answer": "abs((x + {c}) / (x + {d}))", "variableReplacements": [], "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "vsetRange": [0, 1], "checkingType": "absdiff", "type": "jme", "extendBaseMarkingAlgorithm": true, "unitTests": [], "checkVariableNames": false, "showFeedbackIcon": true, "expectedVariableNames": [], "answerSimplification": "all", "scripts": {}}, {"failureRate": 1, "marks": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPreview": true, "answer": "ln(abs((x + {a}) / (x + {d})))", "variableReplacements": [], "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "vsetRange": [0, 1], "checkingType": "absdiff", "type": "jme", "extendBaseMarkingAlgorithm": true, "unitTests": [], "checkVariableNames": false, "showFeedbackIcon": true, "expectedVariableNames": [], "answerSimplification": "all", "scripts": {}}], "variableReplacements": [], "sortAnswers": false, "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "unitTests": [], "scripts": {}}, {"marks": 0, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "showCorrectAnswer": true, "prompt": "Input:
\n\n- $\\simplify[all]{{a} * t ^ { -b} * e ^ (( -{c}) * t) * Sin({b} * t) + (t + {d} * t ^ 3) * e ^ ({c} * t)}$: [[0]]
\n- $\\displaystyle \\simplify[all]{arctan(({c} * y ^ 2 + {d}) / ((y + {a}) * (y + {b})))}$: [[1]]
\n
", "gaps": [{"failureRate": 1, "marks": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPreview": true, "answer": "{a} * t ^ { -b} * e ^ (( -{c}) * t) * sin({b} * t) + (t + {d} * t ^ 3) * e ^ ({c} * t)", "variableReplacements": [], "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "vsetRange": [0, 1], "checkingType": "absdiff", "type": "jme", "extendBaseMarkingAlgorithm": true, "unitTests": [], "checkVariableNames": false, "showFeedbackIcon": true, "expectedVariableNames": [], "answerSimplification": "all", "scripts": {}}, {"failureRate": 1, "marks": 1, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "showPreview": true, "answer": "arctan(({c} * y ^ 2 + {d}) / ((y + {a}) * (y + {b})))", "variableReplacements": [], "showCorrectAnswer": true, "vsetRangePoints": 5, "checkingAccuracy": 0.001, "vsetRange": [0, 1], "checkingType": "absdiff", "type": "jme", "extendBaseMarkingAlgorithm": true, "unitTests": [], "checkVariableNames": false, "showFeedbackIcon": true, "expectedVariableNames": [], "answerSimplification": "all", "scripts": {}}], "variableReplacements": [], "sortAnswers": false, "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacementStrategy": "originalfirst", "unitTests": [], "scripts": {}}], "rulesets": {}, "variable_groups": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "description": "", "definition": "random(2..9)", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "description": "", "definition": "random(3..9)", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "description": "", "definition": "random(2..9)", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "description": "", "definition": "random(2..9)", "templateType": "anything"}}, "name": "Luis's copy of How to enter functions - Getting Started", "functions": {}, "preamble": {"css": "", "js": ""}, "type": "question", "contributors": [{"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}