// Numbas version: finer_feedback_settings {"name": "Luis's copy of Evaluate double integrals with numerical limits", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"extensions": [], "statement": "

Evaluate the following double integrals.

\n

Input your answer as an integer or a fraction, not as a decimal.

", "variablesTest": {"maxRuns": 100, "condition": ""}, "tags": [], "metadata": {"description": "

Two double integrals with numerical limits

", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"variableReplacements": [], "gaps": [{"notallowed": {"strings": ["."], "message": "

Input all numbers in your answer as integers or fractions, not as decimals.

", "showStrings": false, "partialCredit": 0}, "showFeedbackIcon": true, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "variableReplacements": [], "answersimplification": "std", "checkingtype": "absdiff", "answer": "{c*b*(a-1)+(4*d*b*b/4)*(a*a-1)}", "marks": 4, "type": "jme", "vsetrange": [0, 1], "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst"}], "showFeedbackIcon": true, "marks": 0, "type": "gapfill", "showCorrectAnswer": true, "scripts": {}, "prompt": "

\\[I = \\int^\\var{a}_{y=1} \\int^\\var{b}_{x=0} \\left(\\var{c}+\\simplify[std]{{4*d}*x*y} \\right) \\; \\mathrm{d}x \\, \\mathrm{d}y \\]

\n

$I =$ [[0]]

", "variableReplacementStrategy": "originalfirst"}, {"variableReplacements": [], "gaps": [{"answersimplification": "fractionnumbers", "showFeedbackIcon": true, "expectedvariablenames": [], "checkvariablenames": false, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "variableReplacements": [], "checkingtype": "absdiff", "answer": "{-h^(f+1)*((-1)^g-1)/(g*(f+1))}", "marks": 4, "type": "jme", "vsetrange": [0, 1], "showCorrectAnswer": true, "scripts": {}, "variableReplacementStrategy": "originalfirst"}], "showFeedbackIcon": true, "marks": 0, "type": "gapfill", "showCorrectAnswer": true, "scripts": {}, "prompt": "

\\[ I = \\int^\\pi_{x=0} \\int^\\var{h}_{y=0} \\simplify[std]{y^{f}sin({g}x)} \\; \\mathrm{d}y \\, \\mathrm{d}x \\]

\n

$I=$ [[0]]

", "variableReplacementStrategy": "originalfirst"}], "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "h"], "preamble": {"js": "", "css": ""}, "advice": "

(a)

\n

We proceed to evaluate the double-integral:

\n

\\begin{align}
I &= \\int^\\var{a}_1 \\int^\\var{b}_0 \\left(\\var{c}+\\simplify[std]{{4*d}*x*y} \\right) \\; \\mathrm{d}x \\, \\mathrm{d}y \\\\
&= \\int^\\var{a}_1 \\left[\\simplify[std]{{c}x+{2*d}*y*x^2} \\right]_{x=0}^\\var{b} \\; \\mathrm{d}y \\\\
&= \\int^\\var{a}_1 \\left(\\simplify[std]{{c*b}+{2*d*b^2}*y} \\right) \\; \\mathrm{d}y \\\\
&= \\left[\\simplify[std]{{c*b}y+{d*b^2}*y^2} \\right]^\\var{a}_1 \\; \\mathrm{d}y \\\\
&= \\simplify[std]{{c*b*a}+{d*b^2*a^2}-{c*b}-{d*b^2}} \\\\
&= \\simplify[std]{{(c*b*a)+(d*b^2*a^2)-(c*b)-(d*b^2)}}
\\end{align}

\n

(b)

\n

\\begin{align}
I &= \\int^\\pi_0 \\int^\\var{h}_0 \\simplify[std]{y^{f}sin({g}x)} \\; \\mathrm{d}y \\, \\mathrm{d}x \\\\
&= \\int^\\pi_0 \\left[\\simplify[std]{(1/{f+1})*y^{f+1}*sin({g}x)}\\right]_{y=0}^\\var{h} \\; \\mathrm{d}x \\\\[0.5em]
&= \\int^\\pi_0 \\simplify[std]{({h}^{f+1}/{f+1})*sin({g}x)} \\; \\mathrm{d}x  \\\\[0.5em]
&= \\simplify[std]{({h}^{f+1}/{f+1})}\\left[\\simplify[std]{-1/{g}*cos({g}x)}\\right]^\\pi_0  \\\\[0.5em]
&= -\\simplify[std]{({h}^{f+1}/{g*(f+1)})} \\left(\\simplify[std]{{(-1)^g}}-1 \\right) \\\\[0.5em]
&= \\simplify[fractionnumbers]{{-{h}^({f+1})*((-1)^{g}-1)/({g*(f+1)})}}
\\end{align}

", "variables": {"b": {"name": "b", "definition": "random(1..4)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "h": {"name": "h", "definition": "random(1..4)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "g": {"name": "g", "definition": "random(1..2)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "d": {"name": "d", "definition": "random(1..3)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "a": {"name": "a", "definition": "random(2..4)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "c": {"name": "c", "definition": "random(1..9)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}, "f": {"name": "f", "definition": "random(1..4)", "group": "Ungrouped variables", "description": "", "templateType": "anything"}}, "name": "Luis's copy of Evaluate double integrals with numerical limits", "functions": {}, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "variable_groups": [], "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}