// Numbas version: finer_feedback_settings {"name": "Luis's copy of Solve a pair of simultaneous equations", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["a", "c", "b", "that", "this", "sc1", "s1", "s6", "a1", "aort", "a2", "b1", "b2", "sc", "sb", "sa", "fromorto", "c1"], "name": "Luis's copy of Solve a pair of simultaneous equations", "variablesTest": {"condition": "", "maxRuns": 100}, "preamble": {"js": "", "css": ""}, "parts": [{"prompt": "\n\t\t\t
\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1} \\end{eqnarray} \\]
\n\t\t\t$x=\\phantom{{}}$[[0]], $y=\\phantom{{}}$[[1]]
\n\t\t\tInput your answers as fractions or integers, not as decimals.
\n\t\t\tSee \"Show steps\" for a video that describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
\n\t\t\t \n\t\t\t", "gaps": [{"checkvariablenames": false, "showpreview": true, "vsetrangepoints": 5, "answersimplification": "std", "type": "jme", "expectedvariablenames": [], "scripts": {}, "marks": 2, "checkingaccuracy": 0.001, "checkingtype": "absdiff", "answer": "{c*b1-b*c1}/{b1*a-a1*b}", "showCorrectAnswer": true, "vsetrange": [0, 1], "notallowed": {"message": "Input as a fraction or an integer not as a decimal
", "strings": ["."], "showStrings": false, "partialCredit": 0}}, {"checkvariablenames": false, "showpreview": true, "vsetrangepoints": 5, "answersimplification": "std", "type": "jme", "expectedvariablenames": [], "scripts": {}, "marks": 2, "checkingaccuracy": 0.001, "checkingtype": "absdiff", "answer": "{c*a1-a*c1}/{b*a1-a*b1}", "showCorrectAnswer": true, "vsetrange": [0, 1], "notallowed": {"message": "Input as a fraction or an integer not as a decimal
", "strings": ["."], "showStrings": false, "partialCredit": 0}}], "steps": [{"type": "information", "prompt": "", "scripts": {}, "marks": 0, "showCorrectAnswer": true}], "showCorrectAnswer": true, "type": "gapfill", "scripts": {}, "stepsPenalty": 0, "marks": 0}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "type": "question", "functions": {}, "variables": {"a1": {"name": "a1", "templateType": "anything", "description": "", "definition": "switch(a2=2,random(3,5,7,9),a2=3,random(2,4,5,7),a2=4,random(3,5,7,9),a2=5,random(3,4,6,7,9),a2=6,random(4,5,7,8,9),a2=7,random(3,4,5,6,8,9),a2=8,random(3,5,6,7,9),a2=9,random(2,4,5,7,8),9)", "group": "Ungrouped variables"}, "sc": {"name": "sc", "templateType": "anything", "description": "", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "s1": {"name": "s1", "templateType": "anything", "description": "", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "a2": {"name": "a2", "templateType": "anything", "description": "", "definition": "abs(a)", "group": "Ungrouped variables"}, "b": {"name": "b", "templateType": "anything", "description": "", "definition": "sb*random(1..9)", "group": "Ungrouped variables"}, "b1": {"name": "b1", "templateType": "anything", "description": "", "definition": "if(a*b2=a1*b,b2+1,b2)", "group": "Ungrouped variables"}, "that": {"name": "that", "templateType": "anything", "description": "", "definition": "lcm(abs(b),abs(b1))/abs(b1)", "group": "Ungrouped variables"}, "sc1": {"name": "sc1", "templateType": "anything", "description": "", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "fromorto": {"name": "fromorto", "templateType": "anything", "description": "", "definition": "if(b*b1>0,'from','to')", "group": "Ungrouped variables"}, "sb": {"name": "sb", "templateType": "anything", "description": "", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "sa": {"name": "sa", "templateType": "anything", "description": "", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "c1": {"name": "c1", "templateType": "anything", "description": "", "definition": "sc1*random(1..9)", "group": "Ungrouped variables"}, "b2": {"name": "b2", "templateType": "anything", "description": "", "definition": "random(2..9)", "group": "Ungrouped variables"}, "s6": {"name": "s6", "templateType": "anything", "description": "", "definition": "if(b*b1>0,-1,1)", "group": "Ungrouped variables"}, "c": {"name": "c", "templateType": "anything", "description": "", "definition": "sc*random(1..9)", "group": "Ungrouped variables"}, "a": {"name": "a", "templateType": "anything", "description": "", "definition": "sa*random(2..9)", "group": "Ungrouped variables"}, "aort": {"name": "aort", "templateType": "anything", "description": "", "definition": "if(b*b1>0,'take away the equation','add the equation')", "group": "Ungrouped variables"}, "this": {"name": "this", "templateType": "anything", "description": "", "definition": "lcm(abs(b),abs(b1))/abs(b)", "group": "Ungrouped variables"}}, "variable_groups": [], "question_groups": [{"name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": []}], "showQuestionGroupNames": false, "tags": ["ACC1012", "checked2015", "equations", "linear", "pair of linear equations", "simultaneous", "simultaneous linear equations", "solve linear equations", "solving equations", "Solving equations", "video"], "advice": "\n\t\\[ \\begin{eqnarray} \\simplify[std]{{a}x+{b}y}&=&\\var{c}&\\mbox{ ........(1)}\\\\ \\simplify[std]{{a1}x+{b1}y}&=&\\var{c1}&\\mbox{ ........(2)} \\end{eqnarray} \\]
To get a solution for $x$ multiply equation (1) by {this} and equation (2) by {that}
This gives:
\\[ \\begin{eqnarray} \\simplify[std]{{a*this}x+{b*this}y}&=&\\var{this*c}&\\mbox{ ........(3)}\\\\ \\simplify[std]{{a1*that}x+{b1*that}y}&=&\\var{that*c1}&\\mbox{ ........(4)} \\end{eqnarray} \\]
Now {aort} (4) {fromorto} equation (3) to get
\\[\\simplify[std]{({a*this}+{s6*a1*that})x={this*c}+{s6*that*c1}}\\]
And so we get the solution for $x$:
\\[x = \\simplify{{c*b1-b*c1}/{b1*a-a1*b}}\\]
Substituting this value into any of the equations (1) and (2) gives:
\\[y = \\simplify{{c*a1-a*c1}/{b*a1-a*b1}}\\]
You can check that these solutions are correct by seeing if they satisfy both equations (1) and (2) by substituting these values into the equations.
Solve the following simultaneous equations for $x$ and $y$. Input your answers as fractions or integers, not as decimals.
", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "notes": "\n\t\t \t\t \t\t \t\t \t\t \t\t \t\t5/08/2012:
\n\t\t \t\t \t\t \t\t \t\t \t\t \t\tAdded more tags.
\n\t\t \t\t \t\t \t\t \t\t \t\t \t\tAdded description.
\n\t\t \t\t \t\t \t\t \t\t \t\t \t\tChecked calculation. OK.
\n\t\t \t\t \t\t \t\t \t\t \t\t \n\t\t \t\t \t\t \t\t \t\t \n\t\t \t\t \t\t \t\t \n\t\t \t\t \t\t \n\t\t \t\t \n\t\t \n\t\t", "description": "Solve for $x$ and $y$: \\[ \\begin{eqnarray} a_1x+b_1y&=&c_1\\\\ a_2x+b_2y&=&c_2 \\end{eqnarray} \\]
\nThe included video describes a more direct method of solving when, for example, one of the equations gives a variable directly in terms of the other variable.
"}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}