// Numbas version: finer_feedback_settings {"name": "Luis's copy of Quotient rule - differentiate quotient of linear terms", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": ["algebraic manipulation", "Calculus", "checked2015", "derivatives", "derivatives ", "deriving a quotient", "differentiate a quotient", "differentiation", "dividing linear polynomials", "MAS1601"], "statement": "
Let \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]
", "name": "Luis's copy of Quotient rule - differentiate quotient of linear terms", "metadata": {"notes": "\n\t\t1/08/2012:
\n\t\tAdded tags.
\n\t\tChecked calculation. OK.
\n\t\tAdded description.
\n\t\tAll round improvement in display.
\n\t\tAdded forbidden instructions on using decimals.
\n\t\tAdded information on losing 1 mark if use Show steps in part a).
\n\t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "Other method. Find $p,\\;q$ such that $\\displaystyle \\frac{ax+b}{cx+d}= p+ \\frac{q}{cx+d}$. Find the derivative of $\\displaystyle \\frac{ax+b}{cx+d}$.
"}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "parts": [{"prompt": "\n\t\t\tFind numbers $a$ and $b$ such that
\\[\\simplify[std]{f(x) = a + b/({c}x+{d})}\\]
Enter a and b as integers or fractions, but not as decimals.
$a=\\;$[[0]]
\n\t\t\t$b=\\;$[[1]]
\n\t\t\tYou can click on Show steps to get some help, but you will lose 1 mark if you do so.
\n\t\t\t", "type": "gapfill", "marks": 0, "showCorrectAnswer": true, "gaps": [{"checkvariablenames": false, "showCorrectAnswer": true, "answer": "{a}/{c}", "vsetrange": [0, 1], "expectedvariablenames": [], "vsetrangepoints": 5, "type": "jme", "scripts": {}, "checkingtype": "absdiff", "notallowed": {"partialCredit": 0, "message": "Input numbers as fractions or integers and not as decimals.
", "showStrings": false, "strings": ["."]}, "marks": 1, "checkingaccuracy": 0.001, "showpreview": true}, {"checkvariablenames": false, "showCorrectAnswer": true, "answer": "{-det}/{c}", "vsetrange": [0, 1], "expectedvariablenames": [], "vsetrangepoints": 5, "type": "jme", "scripts": {}, "checkingtype": "absdiff", "notallowed": {"partialCredit": 0, "message": "Input numbers as fractions or integers and not as decimals.
", "showStrings": false, "strings": ["."]}, "marks": 1, "checkingaccuracy": 0.001, "showpreview": true}], "stepsPenalty": 1, "scripts": {}, "steps": [{"prompt": "$\\simplify[std]{{a}x+{b}=a*({c}x+{d})+b}$ for suitable numbers $a$ and $b$.
", "type": "information", "marks": 0, "scripts": {}, "showCorrectAnswer": true}]}, {"prompt": "\n\t\t\tDifferentiate
\\[\\simplify[std]{g(x) = 1/({c}x+{d})}\\]
$\\displaystyle \\frac{dg}{dx}=\\;$[[0]]
\n\t\t\tHence using the first part of the question differentiate \\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x+{d})}\\]
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[1]]
\n\t\t\tInput numbers as fractions or integers and not as decimals.
\n\t\t\t", "type": "gapfill", "marks": 0, "showCorrectAnswer": true, "gaps": [{"checkvariablenames": false, "showCorrectAnswer": true, "answer": "{-c}/({c}x+{d})^2", "vsetrange": [10, 11], "answersimplification": "std", "expectedvariablenames": [], "vsetrangepoints": 5, "type": "jme", "scripts": {}, "checkingtype": "absdiff", "notallowed": {"partialCredit": 0, "message": "Input numbers as fractions or integers and not as decimals.
", "showStrings": false, "strings": ["."]}, "marks": 1, "checkingaccuracy": 0.001, "showpreview": true}, {"checkvariablenames": false, "showCorrectAnswer": true, "answer": "{det}/({c}x+{d})^2", "vsetrange": [10, 11], "answersimplification": "std", "expectedvariablenames": [], "vsetrangepoints": 5, "type": "jme", "scripts": {}, "checkingtype": "absdiff", "notallowed": {"partialCredit": 0, "message": "Input numbers as fractions or integers and not as decimals.
", "showStrings": false, "strings": ["."]}, "marks": 1, "checkingaccuracy": 0.001, "showpreview": true}], "scripts": {}}], "variables": {"s1": {"definition": "random(1,-1)", "name": "s1", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "c": {"definition": "if(a*d=b*c1,c1+1,c1)", "name": "c", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "s2": {"definition": "random(1,-1)", "name": "s2", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "c1": {"definition": "random(1..8)", "name": "c1", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "d": {"definition": "s2*random(1..9)", "name": "d", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "b": {"definition": "s1*random(1..9)", "name": "b", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "a": {"definition": "random(2..9)", "name": "a", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "det": {"definition": "a*d-b*c", "name": "det", "templateType": "anything", "group": "Ungrouped variables", "description": ""}}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "type": "question", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}]}, "advice": "\n\ta)
\n\tWe have $\\displaystyle \\simplify[std]{{a}x+{b}={a}/{c}*({c}x+{d})+{b}-{a}*{d}/{c}={a}/{c}*({c}x+{d})+{-det}/{c}}$
Hence \\[\\begin{eqnarray*} \\simplify[std]{({a} * x+{b})/({c}x+{d})}&=&\\simplify[std]{({a}/{c}*({c}x+{d})+{-det}/{c})/({c}x+{d})}\\\\ &=&\\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})} \\end{eqnarray*}\\]
Where we have divided out by $\\simplify[std]{{c}x+{d}}$ at the last step.
b)
\n\tWe have \\[\\frac{dg}{dx} = \\simplify[std]{{-c}/({c}x+{d})^2}\\]
using standard rules of differentiation.
Since from a), \\[f(x) = \\simplify[std]{{a}/{c}+({-det}/{c})/({c}x+{d})}\\]
we see that
\\[\\begin{eqnarray*}\\frac{df}{dx} &=&\\simplify[std,!unitPower,!unitDenominator,!zeroFactor,!zeroTerm,!zeroPower]{(-{c})*(({-det}/{c})/({c}x+{d})^2)}\\\\ &=&\\simplify[std]{{det}/({c}x+{d})^2} \\end{eqnarray*}\\]