// Numbas version: finer_feedback_settings {"name": "Luis's copy of Quantifiers1-", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Luis's copy of Quantifiers1-", "rulesets": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"minMarks": 0, "variableReplacementStrategy": "originalfirst", "shuffleChoices": true, "type": "m_n_x", "marks": 0, "unitTests": [], "customMarkingAlgorithm": "", "displayType": "checkbox", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "shuffleAnswers": false, "matrix": "marking_matrix", "showCellAnswerState": true, "variableReplacements": [], "choices": ["{all[select[0]][0]}", "{all[select[1]][0]}", "{all[select[2]][0]}"], "scripts": {}, "warningType": "warn", "answers": ["{all[select[0]][1]}", "{all[select[1]][1]}", "{all[select[2]][1]}", "True", "False"], "minAnswers": "6", "maxAnswers": "6", "showCorrectAnswer": true, "layout": {"type": "all", "expression": ""}, "maxMarks": 0}, {"minMarks": 0, "variableReplacementStrategy": "originalfirst", "shuffleChoices": true, "type": "m_n_x", "marks": 0, "unitTests": [], "customMarkingAlgorithm": "", "displayType": "checkbox", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "shuffleAnswers": false, "matrix": "marking_matrix1", "showCellAnswerState": true, "variableReplacements": [], "choices": ["{all[select1[0]][0]}", "{all[select1[1]][0]}", "{all[select1[2]][0]}"], "scripts": {}, "warningType": "warn", "answers": ["{all[select1[0]][1]}", "{all[select1[1]][1]}", "{all[select1[2]][1]}", "True", "False"], "minAnswers": "6", "maxAnswers": "6", "showCorrectAnswer": true, "layout": {"type": "all", "expression": ""}, "maxMarks": 0}, {"minMarks": 0, "variableReplacementStrategy": "originalfirst", "shuffleChoices": true, "type": "m_n_x", "marks": 0, "unitTests": [], "customMarkingAlgorithm": "", "displayType": "checkbox", "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "shuffleAnswers": false, "matrix": "marking_matrix2", "showCellAnswerState": true, "variableReplacements": [], "choices": ["{all[select2[0]][0]}", "{all[select2[1]][0]}", "{all[select2[2]][0]}"], "scripts": {}, "warningType": "warn", "answers": ["{all[select2[0]][1]}", "{all[select2[1]][1]}", "{all[select2[2]][1]}", "True", "False"], "minAnswers": "6", "maxAnswers": "6", "showCorrectAnswer": true, "layout": {"type": "all", "expression": ""}, "maxMarks": 0}], "preamble": {"js": "", "css": ""}, "functions": {}, "variables": {"all": {"name": "all", "templateType": "anything", "definition": "[['The square of any real number is greater than $0$.',\n '$\\\\forall x \\\\in \\\\mathbb{R}\\\\;(x^2\\\\gt 0).$',-1],\n ['Given a real number then some integral power is not negative.',\n '$\\\\forall x \\\\in \\\\mathbb{R} \\\\;\\\\exists n \\\\in \\\\mathbb{N}\\\\;(x^n\\\\geq 0).$',1],\n ['A subset of the natural numbers is a subset of the reals.',\n '$\\\\forall X \\\\subseteq \\\\mathbb{N}\\\\;(X\\\\subseteq \\\\mathbb{R}).$',1],\n ['For every natural number $n$ there is a subset of $\\\\mathbb{N}$ with less than $n$ members.',\n '$\\\\forall n \\\\in \\\\mathbb{N}\\\\;\\\\exists X \\\\subseteq \\\\mathbb{N}\\\\;(|X|\\\\lt n).$',1],\n ['All subsets of the natural numbers have less than a fixed number of elements.',\n '$\\\\exists n \\\\in \\\\mathbb{N}\\\\; \\\\forall X \\\\subseteq \\\\mathbb{N}\\\\;(|X|\\\\lt n).$',-1],\n ['All subsets of the natural numbers are finite.',\n '$\\\\forall X \\\\subseteq \\\\mathbb{N}\\\\;\\\\exists n \\\\in \\\\mathbb{Z}\\\\;(|X|=n).$',-1],\n ['Given an integer $n$, there is a subset of the natural numbers with $n$ elements.',\n '$\\\\forall n \\\\in \\\\mathbb{Z}\\\\;\\\\exists X \\\\subseteq \\\\mathbb{N}\\\\;(|X|=n).$',-1],\n ['Given an integer, then adding $5$ to it gives another integer.',\n '$\\\\forall n \\\\in \\\\mathbb{Z}\\\\; \\\\exists m \\\\in \\\\mathbb{Z}\\\\; (m=n+5).$',1],\n ['There is an integer $t$ such that adding $5$ to any integer gives $t$.',\n '$\\\\exists m \\\\in \\\\mathbb{Z}\\\\; \\\\forall n \\\\in \\\\mathbb{Z}\\\\; (m=n+5).$',-1]\n ]", "description": "", "group": "Ungrouped variables"}, "marking_matrix2": {"name": "marking_matrix2", "templateType": "anything", "definition": "map(list(neg_marks[x])+[all[select2[x]][2]]+[-1*all[select2[x]][2]],x,0..2)", "description": "", "group": "Part 2"}, "select": {"name": "select", "templateType": "anything", "definition": "shuffle(list(0..length(all)-1))[0..3]", "description": "", "group": "Part 0"}, "marking_matrix": {"name": "marking_matrix", "templateType": "anything", "definition": "map(list(neg_marks[x])+[all[select[x]][2]]+[-1*all[select[x]][2]],x,0..2)", "description": "", "group": "Part 0"}, "marking_matrix1": {"name": "marking_matrix1", "templateType": "anything", "definition": "map(list(neg_marks[x])+[all[select1[x]][2]]+[-1*all[select1[x]][2]],x,0..2)", "description": "", "group": "Part 1"}, "select2": {"name": "select2", "templateType": "anything", "definition": "list(set(0..length(all)-1)-(set(select) or set(select1)))", "description": "", "group": "Part 2"}, "select1": {"name": "select1", "templateType": "anything", "definition": "list(set(0..length(all)-1)-set(select))[0..3]", "description": "", "group": "Part 1"}, "neg_marks": {"name": "neg_marks", "templateType": "anything", "definition": "2*id(3)+matrix(map(map(-1,x,0..2),y,0..2))", "description": "", "group": "Ungrouped variables"}}, "variable_groups": [{"name": "Part 0", "variables": ["marking_matrix", "select"]}, {"name": "Part 1", "variables": ["select1", "marking_matrix1"]}, {"name": "Part 2", "variables": ["select2", "marking_matrix2"]}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "
English sentences are given and for each the appropriate proposition involving quantifiers is to be chosen. Also choose whether the propositions are true or false.
"}, "tags": [], "advice": "", "extensions": [], "statement": "Elija la proposición apropiada para las siguientes oraciones en inglés. También elige si son verdaderas o falsas.
\nDebe elegir $ 2 $ en cada fila, una de las cuales es determinar si la proposición es verdadera o falsa.
\nTenga en cuenta también que cada respuesta incorrecta quita una de su puntuación. Sin embargo, su puntuación mínima es de $ 0 $.
", "ungrouped_variables": ["all", "neg_marks"], "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}