// Numbas version: finer_feedback_settings {"name": "Luis's copy of Integration: Indefinite integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "\n\t

Integrate the following function $f(x)$.

\n\t

 
Input the constant of integration as $C$.

\n\t", "tags": ["calculus", "Calculus", "checked2015", "constant of integration", "exponential function", "indefinite integration", "integrating powers", "integration", "integration of exponential function", "integration of powers", "integration of trigonometric functions", "mas1601", "MAS1601", "standard integrals", "Steps", "steps", "trigonometric functions"], "functions": {}, "question_groups": [{"name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": []}], "variables": {"a1": {"group": "Ungrouped variables", "definition": "random(2..5)", "templateType": "anything", "description": "", "name": "a1"}, "b": {"group": "Ungrouped variables", "definition": "s2*random(2..9)", "templateType": "anything", "description": "", "name": "b"}, "a": {"group": "Ungrouped variables", "definition": "s1*random(2..5)", "templateType": "anything", "description": "", "name": "a"}, "b1": {"group": "Ungrouped variables", "definition": "s3*random(2..9)", "templateType": "anything", "description": "", "name": "b1"}, "c3": {"group": "Ungrouped variables", "definition": "s5*random(2..8)", "templateType": "anything", "description": "", "name": "c3"}, "s3": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s3"}, "s4": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s4"}, "s1": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s1"}, "a2": {"group": "Ungrouped variables", "definition": "s4*random(3..9)", "templateType": "anything", "description": "", "name": "a2"}, "s2": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s2"}, "s5": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s5"}}, "name": "Luis's copy of Integration: Indefinite integral", "ungrouped_variables": ["a", "b", "s3", "s2", "s1", "s5", "s4", "a1", "a2", "b1", "c3"], "variable_groups": [], "type": "question", "preamble": {"css": "", "js": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Find $\\displaystyle \\int ae ^ {bx}+ c\\sin(dx) + px ^ {q}\\;dx$.

", "notes": "\n\t\t

2/08/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Corrected mistake in formula for integrating $\\sin(ax)$ in Steps and Advice.

\n\t\t

Checked calculation. OK.

\n\t\t

Added decimal point to forbidden strings along with message to user re input of numbers.

\n\t\t

Message about Show steps included. Also another message about including the constant of integration.

\n\t\t

Changed checking range from 0 to 1 to 1 to 2 as we can have negative powers of $x$.

\n\t\t

Improved display of Steps by aligning integral signs.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "prompt": "\n\t\t\t

$\\simplify[std]{f(x) = {b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3}}$

\n\t\t\t

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n\t\t\t

Input all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.

\n\t\t\t

Click on Show steps to get more information. You will not lose any marks by doing so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

", "scripts": {}, "showCorrectAnswer": true, "marks": 0}], "gaps": [{"checkvariablenames": false, "type": "jme", "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"strings": ["."], "message": "

Input all numbers as integers or fractions and not decimals.

", "partialCredit": 0, "showStrings": false}, "marks": 3, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "vsetrange": [1, 2], "scripts": {}, "answersimplification": "std", "answer": "({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C", "checkingtype": "absdiff"}], "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "marks": 0}], "rulesets": {"surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}], "std": ["all", "!collectNumbers", "fractionNumbers"]}, "advice": "\n\t

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

\n\t

Splitting the integral into three parts and using the above information we have:
\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]

\n\t", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}