// Numbas version: finer_feedback_settings {"name": "Luis's copy of Integration: Indefinite integral", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "\n\t
Integrate the following function $f(x)$.
\n\t
Input the constant of integration as $C$.
Find $\\displaystyle \\int ae ^ {bx}+ c\\sin(dx) + px ^ {q}\\;dx$.
", "notes": "\n\t\t2/08/2012:
\n\t\tAdded tags.
\n\t\tAdded description.
\n\t\tCorrected mistake in formula for integrating $\\sin(ax)$ in Steps and Advice.
\n\t\tChecked calculation. OK.
\n\t\tAdded decimal point to forbidden strings along with message to user re input of numbers.
\n\t\tMessage about Show steps included. Also another message about including the constant of integration.
\n\t\tChanged checking range from 0 to 1 to 1 to 2 as we can have negative powers of $x$.
\n\t\tImproved display of Steps by aligning integral signs.
\n\t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "prompt": "\n\t\t\t$\\simplify[std]{f(x) = {b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3}}$
\n\t\t\t$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\n\t\t\tInput all numbers as integers or fractions and not decimals. Remember to include the constant of integration $C$.
\n\t\t\tClick on Show steps to get more information. You will not lose any marks by doing so.
\n\t\t\t", "steps": [{"type": "information", "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]
", "scripts": {}, "showCorrectAnswer": true, "marks": 0}], "gaps": [{"checkvariablenames": false, "type": "jme", "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"strings": ["."], "message": "Input all numbers as integers or fractions and not decimals.
", "partialCredit": 0, "showStrings": false}, "marks": 3, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "vsetrange": [1, 2], "scripts": {}, "answersimplification": "std", "answer": "({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C", "checkingtype": "absdiff"}], "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "marks": 0}], "rulesets": {"surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}], "std": ["all", "!collectNumbers", "fractionNumbers"]}, "advice": "\n\tNote that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]
\n\tSplitting the integral into three parts and using the above information we have:
\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]