// Numbas version: finer_feedback_settings {"name": "Luis's copy of Integration: Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"gaps": [{"answer": "ln(abs({a}*x^2+{b}*x+{c}))+C", "vsetrange": [0, 1], "notallowed": {"showStrings": false, "partialCredit": 0, "strings": ["."], "message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions

"}, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "checkingaccuracy": 0.001, "showpreview": true, "showCorrectAnswer": true, "marks": 3, "checkvariablenames": false, "expectedvariablenames": [], "answersimplification": "std", "vsetrangepoints": 5}], "stepsPenalty": 1, "showCorrectAnswer": true, "marks": 0, "scripts": {}, "type": "gapfill", "prompt": "\n

\\[I=\\simplify[std]{Int(({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c}),x)}\\]

\n

$I=\\;$[[0]]

\n

Input the constant of integration as $C$.

\n

Input all numbers as integers or fractions not as decimals.

\n

Click on Show steps if you need help. You will lose 1 mark if you do so.

\n ", "steps": [{"showCorrectAnswer": true, "marks": 0, "scripts": {}, "type": "information", "prompt": "

Try the substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$

"}]}], "name": "Luis's copy of Integration: Indefinite integral by substitution", "ungrouped_variables": ["a", "c", "b", "f", "s1", "b1", "c1"], "variables": {"a": {"description": "", "definition": "random(1..5)", "templateType": "anything", "name": "a", "group": "Ungrouped variables"}, "s1": {"description": "", "definition": "random(1,-1)", "templateType": "anything", "name": "s1", "group": "Ungrouped variables"}, "c": {"description": "", "definition": "a*b1^2+c1", "templateType": "anything", "name": "c", "group": "Ungrouped variables"}, "f": {"description": "", "definition": "-a*(1+b1)^2", "templateType": "anything", "name": "f", "group": "Ungrouped variables"}, "b": {"description": "", "definition": "2*a+b1", "templateType": "anything", "name": "b", "group": "Ungrouped variables"}, "c1": {"description": "", "definition": "max(-10,f+1)+random(1..5)", "templateType": "anything", "name": "c1", "group": "Ungrouped variables"}, "b1": {"description": "", "definition": "s1*random(1..5)", "templateType": "anything", "name": "b1", "group": "Ungrouped variables"}}, "preamble": {"css": "", "js": ""}, "statement": "\n

Find the following integral.

\n

Input the constant of integration as $C$.

\n

Input all numbers as integers or fractions.

\n

 

\n ", "metadata": {"description": "

Find $\\displaystyle \\int \\frac{2ax + b}{ax ^ 2 + bx + c}\\;dx$

", "notes": "\n \t\t

2/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Checked calculation. OK.

\n \t\t

Added information about Show steps in prompt content area. 

\n \t\t

Added decimal point as forbidden string and included message in prompt about not entering decimals.

\n \t\t

Got rid of a redundant ruleset. !noLeadingMinus added to std ruleset.

\n \t\t

Note that the choice of variables means that the argument of the log answer is always $\\gt 0$ so no need to use abs.

\n \t\t

 

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "functions": {}, "variable_groups": [], "question_groups": [{"questions": [], "pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered"}], "showQuestionGroupNames": false, "advice": "

This exercise is best solved by using substitution.

\n

Note that the numerator $\\simplify[std]{{2 * a} * x + {b}}$ of \\[\\simplify[std]{({2 * a} * x + {b}) / ({a} * x ^ 2 + {b} * x + {c})}\\] is the derivative of the denominator $\\simplify[std]{{a} * x ^ 2 + {b} * x + {c}}$

\n

So if you use as your substitution $u=\\simplify[std]{{a} * (x ^ 2) + ({b} * x) + {c}}$ you then have $\\simplify[std]{ du = ({2 * a} * x + {b}) * dx}$

\n

Hence we can replace $\\simplify[std]{ ({2 * a} * x + {b}) * dx}$ by $du$

\n

Hence the integral becomes:

\n

\\[\\begin{eqnarray*} I&=&\\int\\;\\frac{du}{u}\\\\ &=&\\ln(|u|)+C\\\\ &=& \\simplify[std]{ln(abs({a} * (x ^ 2) + ({b} * x) + {c}))+C} \\end{eqnarray*}\\]

\n

A Useful Result
This example can be generalised.
Suppose \\[I = \\int\\; \\frac{f'(x)}{f(x)}\\;dx\\]
The using the substitution $u=f(x)$ we find that $du=f'(x)\\;dx$ and so using the same method as above:
\\[I = \\int \\frac{du}{u} = \\ln(|u|)+ C = \\ln(|f(x)|)+C\\]

", "type": "question", "tags": ["Calculus", "calculus", "checked2015", "indefinite integration", "integration", "integration by substitution", "MAS1601", "mas1601", "Steps", "steps", "substitution"], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}