// Numbas version: exam_results_page_options {"name": "Luis's copy of Integration by partial fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

First we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$. You can do this by spotting the factors or by completing the square.
Next we use partial fractions to find $A$ and $B$ such that:
\\[\\displaystyle \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:

\n

$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}*x+{d}} \\Rightarrow \\simplify[std]{(A+B)*x+{b}*A+{a}*B={c}*x+{d}}$

\n

Identifying coefficients:

\n

Constant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$

\n

Coefficent $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$

\n

On solving these equations we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$

\n

Which gives: \\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))}\\]

\n

So \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\\\ &=&\\simplify[std]{Int(({c}*x+{d})/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*(Int(1/(x+{a}),x)) +({d-b*c}/{a-b})Int(1/(x+{b}),x)}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C} \\end{eqnarray*}\\]

", "preamble": {"css": "", "js": ""}, "question_groups": [{"questions": [], "pickingStrategy": "all-ordered", "pickQuestions": 0, "name": ""}], "name": "Luis's copy of Integration by partial fractions", "variable_groups": [], "type": "question", "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "\n

Find the following integral.

\n

\\[I = \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\]

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n ", "parts": [{"prompt": "\n

$I=\\;$[[0]]

\n

Input all numbers as fractions or integers and not decimals.

\n

Input the constant of integration as $C$.

\n

Click on Show steps for help if you need it. You will lose 1 mark if you do so.

\n ", "steps": [{"prompt": "\n

First of all factorise the denominator.

\n

You have to find $a$ and $b$ such that $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+a)*(x+b)}$

\n

Then use partial fractions to write:
\\[\\simplify[std]{({c}*x+{d})/((x +a)*(x+b)) = A/(x+a)+B/(x+b)}\\]

\n

for suitable integers or fractions $A$ and $B$.

\n ", "type": "information", "showCorrectAnswer": true, "marks": 0, "scripts": {}}], "scripts": {}, "gaps": [{"checkvariablenames": false, "answersimplification": "std", "scripts": {}, "type": "jme", "checkingtype": "absdiff", "notallowed": {"showStrings": false, "message": "

Input all numbers as fractions or integers and not decimals.

", "partialCredit": 0, "strings": ["."]}, "expectedvariablenames": [], "marks": 3, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "vsetrange": [11, 12], "showpreview": true, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C", "vsetrangepoints": 5}], "stepsPenalty": 1, "type": "gapfill", "showCorrectAnswer": true, "marks": 0}], "ungrouped_variables": ["a", "c", "b", "d", "s3", "s2", "s1", "b1", "d1"], "metadata": {"notes": "\n \t\t

5/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Added decimal point as forbidden string.

\n \t\t

Note the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?

\n \t\t

Improved display of Advice. 

\n \t\t

Added information about Show steps, also introduced penalty of 1 mark.

\n \t\t

Added !noLeadingMinus to ruleset std for display purposes.

\n \t\t", "description": "

Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{ax+b}{x^2+cx+d}\\;dx,\\;a \\neq 0$ using partial fractions or otherwise.

", "licence": "Creative Commons Attribution 4.0 International"}, "tags": ["2 distinct linear factors", "Calculus", "MAS1601", "Steps", "checked2015", "completing the square", "constant of integration", "factorising a quadratic", "indefinite integration", "integration", "logarithms", "partial fractions", "two distinct linear factors"], "showQuestionGroupNames": false, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "variables": {"c": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "c", "definition": "random(2..9)"}, "b": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "b", "definition": "if(b1=a,b1+s3,b1)"}, "b1": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "b1", "definition": "s2*random(1..9)"}, "d": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "d", "definition": "if(d1=a*c,if(d1+1=b*c,d1+2,d1+1),if(d1=b*c,if(d1+1=a*c,d1+2,d1+1),d1))"}, "s3": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "s3", "definition": "random(1,-1)"}, "s2": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "s2", "definition": "random(1,-1)"}, "d1": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "d1", "definition": "s3*random(1..9)"}, "a": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "a", "definition": "s1*random(1..9)"}, "s1": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "s1", "definition": "random(1,-1)"}}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}