// Numbas version: finer_feedback_settings {"name": "Luis's copy of Indefinite integral by substitution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "\n\t

Find the following integral.

\n\t

 

\n\t", "tags": ["Calculus", "MAS1601", "Steps", "arcsin", "checked2015", "constant of integration", "integration", "integration by substitution", "inverse trigonometric functions", "standard integrals", "substitution"], "functions": {}, "question_groups": [{"name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": []}], "variables": {"c": {"group": "Ungrouped variables", "definition": "random(1..9)", "templateType": "anything", "description": "", "name": "c"}, "b": {"group": "Ungrouped variables", "definition": "if(b1=a,b1+1,b1)", "templateType": "anything", "description": "", "name": "b"}, "a": {"group": "Ungrouped variables", "definition": "random(1..9)", "templateType": "anything", "description": "", "name": "a"}, "b1": {"group": "Ungrouped variables", "definition": "random(2..9)", "templateType": "anything", "description": "", "name": "b1"}}, "name": "Luis's copy of Indefinite integral by substitution", "ungrouped_variables": ["a", "c", "b", "b1"], "variable_groups": [], "type": "question", "preamble": {"css": "", "js": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Find $\\displaystyle \\int \\frac{c}{\\sqrt{a-bx^2}}\\;dx$. Solution involves the inverse trigonometric function $\\arcsin$.

", "notes": "\n\t\t

2/08/2012:

\n\t\t

Added tags.

\n\t\t

Added description.

\n\t\t

Checked calculation. OK.

\n\t\t

Added information about Show steps in prompt content area. 

\n\t\t

Corrected error in Show steps, the substitution was the wrong way round.

\n\t\t

Simplified the presentation of Advice.

\n\t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 1, "prompt": "\n\t\t\t

\\[I=\\simplify[std]{Int(({c} / (sqrt({a}-{b}x^2))),x)}\\]

\n\t\t\t

$I=\\;$[[0]]

\n\t\t\t

Input all numbers as integers, fractions or surds. No decimal numbers. You input surds, for example, $\\sqrt{2}$ by writing sqrt(2).

\n\t\t\t

Input the constant of integration as $C$.

\n\t\t\t

You can get help by clicking on Show steps. You will lose 1 mark if you do so.

\n\t\t\t", "steps": [{"type": "information", "prompt": "

Try the substitution $\\displaystyle \\simplify[std]{u=(sqrt({b})/sqrt({a}))*x}$ and then consider the standard integral \\[\\int \\frac{dx}{\\sqrt{1-x^2}}=\\arcsin(x)+C\\]

", "scripts": {}, "showCorrectAnswer": true, "marks": 0}], "gaps": [{"checkvariablenames": false, "type": "jme", "showCorrectAnswer": true, "expectedvariablenames": [], "notallowed": {"strings": ["."], "message": "

Do not input numbers as decimals, only as integers without the decimal point, or fractions or surds (such as sqrt(2) for $\\sqrt{2}$).

", "partialCredit": 0, "showStrings": false}, "marks": 3, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "vsetrange": [0, 0.25], "scripts": {}, "answersimplification": "std", "answer": "({c}/sqrt({b}))*arcsin((sqrt({b})/sqrt({a}))*x)+C", "checkingtype": "absdiff"}], "scripts": {}, "type": "gapfill", "showCorrectAnswer": true, "marks": 0}], "rulesets": {"surdf": [{"pattern": "a/sqrt(b)", "result": "(sqrt(b)*a)/b"}], "std": ["all", "!collectNumbers", "fractionNumbers"]}, "advice": "\n\t

For the integral \\[I=\\simplify[std]{Int((({c}) / (sqrt({a}-{b}x^2))),x)}\\] use the substitution $\\displaystyle \\simplify[std]{u=(sqrt({b})/sqrt({a}))*x}$
so that \\[\\simplify[all,!sqrtProduct,fractionNumbers]{sqrt({a}-{b}x^2)=sqrt({a}-{b}*({a}/{b})*u^2)=sqrt({a}-{a}*u^2)=sqrt({a})*sqrt(1-u^2)}\\]

\n\t

We have $\\displaystyle \\simplify[std]{du=(sqrt({b})/sqrt({a}))dx}$ and we get
\\[\\begin{eqnarray*}I&=&\\simplify[std]{({c}*(sqrt({a})/sqrt({b})))*Int((1 / ( sqrt({a})*sqrt(1-u^2) )),u)}\\\\  &=&\\simplify[std]{({c}/sqrt({b}))*Int((1 / (sqrt(1-u^2))),u)}\\\\ &=&\\simplify[std]{({c}/sqrt({b}))*arcsin(u)+C}\\\\ &=&\\simplify[std]{({c}/sqrt({b}))*arcsin((sqrt({b})/sqrt({a}))*x)+C} \\end{eqnarray*}\\]
on replacing $u$ by $\\displaystyle \\simplify[std]{(sqrt({b})/sqrt({a}))*x}$

\n\t", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}