// Numbas version: finer_feedback_settings {"name": "Luis's copy of Indefinite integral of polynomial fraction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "\n \n \n

Since the degree of the numerator of $f(x)$ is greater than the denominator, $f(x)$ is improper.

\n \n \n \n

First, perform a long division, so that $f(x)$ can be rewritten in the form $\\displaystyle{f(x)=\\simplify[std]{{n}x+{m}+({p}x)/(1+x^2)}}$.

\n \n \n \n

Each term of this expression can then be integrated using standard functions (to within the arbitrary constant) to give:

\n \n \n \n

$\\displaystyle{\\int f(x)\\;dx=\\simplify[std]{{n}x^2/2+{m}x+{p}/2*ln(1+x^2)} +C}$

\n \n ", "preamble": {"css": "", "js": ""}, "question_groups": [{"questions": [], "pickingStrategy": "all-ordered", "pickQuestions": 0, "name": ""}], "name": "Luis's copy of Indefinite integral of polynomial fraction", "variable_groups": [], "type": "question", "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Integrate the following function $f(x)$

\n

\\[f(x)=\\simplify[std]{({n}x^3+{m}x^2+{n+p}x +{m})/(1+x^2)}\\]

\n

Note that if you need to enter the absolute value in your answer, e.g. $|x|$, then you should not use the vertical bar on the keyboard.

\n

Instead you must use the abs() function, i.e. abs(x).

", "parts": [{"prompt": "

$\\displaystyle \\int f(x)\\;dx=\\;\\;$[[0]]

\n

Input the arbitrary constant of integration as $C$.

", "scripts": {}, "type": "gapfill", "gaps": [{"checkvariablenames": false, "answersimplification": "std", "scripts": {}, "checkingtype": "absdiff", "type": "jme", "expectedvariablenames": [], "marks": 2, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "answer": "{n}/2*x^2 + {m} * x + {p}/2 * ln(1+x^2)+C", "vsetrangepoints": 5}], "showCorrectAnswer": true, "marks": 0}], "ungrouped_variables": ["sp", "m", "n", "p", "sn", "sm"], "metadata": {"notes": "

2/07/2012:

\n

Added tags.

\n

Checked calculation.

\n

19/07/2012:

\n

Added description.

\n

23/07/2012:

\n

Added tags.

\n

Question appears to be working correctly.

\n

 

\n

 

", "description": "

Find $\\displaystyle \\int \\frac{nx^3+mx^2+px +m}{x^2+1} \\;dx$

", "licence": "Creative Commons Attribution 4.0 International"}, "tags": ["Calculus", "checked2015", "degree of polynomial", "indefinite integration", "integration", "logarithm", "logs", "long division of polynomials", "MAS1601", "polynomial division", "polynomials"], "showQuestionGroupNames": false, "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "variables": {"n": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "n", "definition": "sn*random(1..9)"}, "sm": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "sm", "definition": "random(1,-1)"}, "sp": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "sp", "definition": "random(1,-1)"}, "sn": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "sn", "definition": "random(1,-1)"}, "p": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "p", "definition": "sp*random(1..9)"}, "m": {"templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "m", "definition": "sm*random(1..9)"}}, "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}