// Numbas version: finer_feedback_settings {"name": "Luis's copy of Indefinite integration using standard integrals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "\n

Integrate the following function $f(x)$.

\n


You must input the constant of integration as $C$.

\n ", "tags": ["Calculus", "calculus", "checked2015", "exponential function", "functions", "indefinite integral", "indefinite integration", "integration", "integration of an exponential", "integration of an integer power", "integration of trigonometric functions", "mas1601", "MAS1601", "Steps", "steps", "trigonometric function"], "functions": {}, "question_groups": [{"name": "", "pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": []}], "variables": {"a1": {"group": "Ungrouped variables", "definition": "random(2..5)", "templateType": "anything", "description": "", "name": "a1"}, "b": {"group": "Ungrouped variables", "definition": "s2*random(2..9)", "templateType": "anything", "description": "", "name": "b"}, "a": {"group": "Ungrouped variables", "definition": "s1*random(2..5)", "templateType": "anything", "description": "", "name": "a"}, "b1": {"group": "Ungrouped variables", "definition": "s3*random(2..9)", "templateType": "anything", "description": "", "name": "b1"}, "c3": {"group": "Ungrouped variables", "definition": "s5*random(2..8)", "templateType": "anything", "description": "", "name": "c3"}, "s3": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s3"}, "s4": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s4"}, "s1": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s1"}, "a2": {"group": "Ungrouped variables", "definition": "s4*random(3..9)", "templateType": "anything", "description": "", "name": "a2"}, "s2": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s2"}, "s5": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "description": "", "name": "s5"}}, "name": "Luis's copy of Indefinite integration using standard integrals", "ungrouped_variables": ["a", "b", "s3", "s2", "s1", "s5", "s4", "a1", "a2", "b1", "c3"], "variable_groups": [], "type": "question", "preamble": {"css": "", "js": ""}, "variablesTest": {"maxRuns": 100, "condition": ""}, "metadata": {"description": "

Integrate $f(x) = ae ^ {bx} + c\\sin(dx) + px^q$. Must input $C$ as the constant of integration.

", "notes": "\n \t\t

 20/06/2012:

\n \t\t

Added tags.

\n \t\t

Tidied up display of prompt using \\displaystyle.

\n \t\t

Problems with display of $e^{ax}$ for $a \\lt 0$. Had brackets around the $a$. (Corrected as an issue 29/06/2012).

\n \t\t

Mistake in Show steps, corrected.

\n \t\t

Added requirement to enter numbers as fractions or integers.

\n \t\t

 

\n \t\t

3/07/2012:

\n \t\t

Added tags.

\n \t\t

 

\n \t\t

9/07/2012:

\n \t\t

Extended ruleset std to include !noLeadingMinus so that answer is displayed in the right order.

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "parts": [{"stepsPenalty": 0, "prompt": "\n

$\\simplify[std]{f(x) = {b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3}}$

\n

$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]

\n

Enter all numbers as integers or fractions and not as decimals.

\n ", "variableReplacements": [], "steps": [{"type": "information", "variableReplacements": [], "scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "

Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]

", "showCorrectAnswer": true, "marks": 0}], "gaps": [{"variableReplacements": [], "checkvariablenames": false, "type": "jme", "scripts": {}, "expectedvariablenames": [], "notallowed": {"strings": ["."], "message": "

Enter all numbers as integers or fractions and not as decimals.

", "partialCredit": 0, "showStrings": false}, "marks": 3, "checkingaccuracy": 0.001, "vsetrangepoints": 5, "showpreview": true, "vsetrange": [0, 1], "variableReplacementStrategy": "originalfirst", "answersimplification": "std", "answer": "({b}/{a}) * e ^({a}*x) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C", "showCorrectAnswer": true, "checkingtype": "absdiff"}], "scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "showCorrectAnswer": true, "marks": 0}], "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "advice": "\n

Splitting the integral into three parts and using the information in Steps we have: 

\n

\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]

\n ", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}