// Numbas version: finer_feedback_settings {"name": "Luis's copy of Differentiation: Quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "parts": [{"gaps": [{"answer": "{-c*a}x^2+{-2*b*c}x+{a*d}", "vsetrange": [0, 1], "notallowed": {"showStrings": false, "partialCredit": 0, "strings": ["."], "message": "

Input all numbers as fractions or integers and not as decimals.

"}, "checkingtype": "absdiff", "scripts": {}, "type": "jme", "checkingaccuracy": 0.001, "showpreview": true, "showCorrectAnswer": true, "marks": 3, "checkvariablenames": false, "expectedvariablenames": [], "answersimplification": "std", "vsetrangepoints": 5}], "stepsPenalty": 0, "showCorrectAnswer": true, "marks": 0, "scripts": {}, "type": "gapfill", "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input all numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n ", "steps": [{"showCorrectAnswer": true, "marks": 0, "scripts": {}, "type": "information", "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

"}]}], "name": "Luis's copy of Differentiation: Quotient rule", "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "variables": {"a": {"description": "", "definition": "random(2..9)", "templateType": "anything", "name": "a", "group": "Ungrouped variables"}, "d": {"description": "", "definition": "s2*random(1..9)", "templateType": "anything", "name": "d", "group": "Ungrouped variables"}, "s2": {"description": "", "definition": "random(1,-1)", "templateType": "anything", "name": "s2", "group": "Ungrouped variables"}, "det": {"description": "", "definition": "a*d-b*c", "templateType": "anything", "name": "det", "group": "Ungrouped variables"}, "c": {"description": "", "definition": "if(a*d=b*c1,c1+1,c1)", "templateType": "anything", "name": "c", "group": "Ungrouped variables"}, "s1": {"description": "", "definition": "random(1,-1)", "templateType": "anything", "name": "s1", "group": "Ungrouped variables"}, "b": {"description": "", "definition": "s1*random(1..9)", "templateType": "anything", "name": "b", "group": "Ungrouped variables"}, "c1": {"description": "", "definition": "random(1..8)", "templateType": "anything", "name": "c1", "group": "Ungrouped variables"}}, "preamble": {"css": "", "js": ""}, "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "metadata": {"description": "

The derivative of $\\displaystyle \\frac{ax+b}{cx^2+d}$ is of the form $\\displaystyle \\frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.

", "notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers input as fractions or integers, so added decimal point ot forbidden strings.

\n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "functions": {}, "variable_groups": [], "question_groups": [{"questions": [], "pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered"}], "showQuestionGroupNames": false, "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d})-{2*c}x({a}x+{b}))/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({a*c}x^2+{a*d}-{2*c*a}x^2-{2*c*b}x)/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*d})/({c}x^2+{d})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*d}}$

\n \n \n ", "type": "question", "tags": ["algebraic manipulation", "calculus", "Calculus", "checked2015", "derivative of a quotient", "differentiation", "MAS1601", "mas1601", "quotient rule", "Steps", "steps"], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}