// Numbas version: exam_results_page_options {"name": "Luis's copy of Chain rule - trig and quadratic,", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": ["Calculus", "MAS1601", "SFY0004", "Steps", "chain rule", "checked2015", "derivative of a function of a function", "differentiation", "function of a function"], "statement": "

Differentiate the following function $f(x)$ using the chain rule.

", "name": "Luis's copy of Chain rule - trig and quadratic,", "metadata": {"notes": "

1/08/2012:

\n

Added tags.

\n

Added description.

\n

Checked calculation. OK.

\n

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n

Got rid of a redundant ruleset.

\n

Improved display in prompt.

", "licence": "Creative Commons Attribution 4.0 International", "description": "

Differentiate $\\displaystyle \\cos(e^{ax}+bx^2+c)$

"}, "ungrouped_variables": ["a", "s2", "c", "b", "s1"], "parts": [{"prompt": "

\\[\\simplify[std]{f(x) = cos(e^({a}x) +{b}x^2+{c})}\\]

\n

$\\displaystyle \\frac{df}{dx}=\\;$[[0]]

\n

Click on Show steps for more information. You will not lose any marks by doing so.

", "type": "gapfill", "marks": 0, "showCorrectAnswer": true, "gaps": [{"checkvariablenames": false, "showCorrectAnswer": true, "answer": "-({a}e^({a}x)+{2*b}x)*sin(e^({a}x) +{b}x^2+{c})", "vsetrange": [0, 1], "answersimplification": "std", "expectedvariablenames": [], "vsetrangepoints": 5, "type": "jme", "marks": 3, "checkingtype": "absdiff", "scripts": {}, "checkingaccuracy": 0.001, "showpreview": true}], "stepsPenalty": 0, "scripts": {}, "steps": [{"prompt": "\n \n \n

The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n ", "type": "information", "marks": 0, "scripts": {}, "showCorrectAnswer": true}]}], "variables": {"s1": {"definition": "random(1,-1)", "name": "s1", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "b": {"definition": "s1*random(1..9)", "name": "b", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "c": {"definition": "s2*random(1..9)", "name": "c", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "a": {"definition": "random(2..9)", "name": "a", "templateType": "anything", "group": "Ungrouped variables", "description": ""}, "s2": {"definition": "random(1,-1)", "name": "s2", "templateType": "anything", "group": "Ungrouped variables", "description": ""}}, "variable_groups": [], "preamble": {"css": "", "js": ""}, "type": "question", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "advice": "\n \n \n

$\\simplify[std]{f(x) = cos(e^({a}x) +{b}x^2+{c})}$
The chain rule says that if $f(x)=g(h(x))$ then
\\[\\simplify[std]{f'(x) = h'(x)g'(h(x))}\\]
One way to find $f'(x)$ is to let $u=h(x)$ then we have $f(u)=g(u)$ as a function of $u$.
Then we use the chain rule in the form:
\\[\\frac{df}{dx} = \\frac{du}{dx}\\frac{df(u)}{du}\\]
Once you have worked this out, you replace $u$ by $h(x)$ and your answer is now in terms of $x$.

\n \n \n \n

For this example, we let $u=\\simplify[std]{e^({a}x) +{b}x^2+{c}}$ and we have $f(u)=\\simplify[std]{cos(u)}$.
This gives
\\[\\begin{eqnarray*}\\frac{du}{dx} &=& \\simplify[std]{{a}e^({a}x) +{2*b}x}\\\\\n \n \\frac{df(u)}{du} &=& \\simplify[std]{-sin(u)} \\end{eqnarray*}\\]

\n \n \n \n

Hence on substituting into the chain rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*}\\frac{df}{dx} &=& \\simplify[std]{({a}e^({a}x) +{2*b}x) * (-sin(u))}\\\\\n \n &=& \\simplify[std]{-({a}e^({a}x) +{2*b}x)*sin(e^({a}x) +{b}x^2+{c})}\n \n \\end{eqnarray*}\\]
on replacing $u$ by $\\simplify[std]{e^({a}x) +{b}x^2+{c}}$.

\n \n ", "showQuestionGroupNames": false, "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "questions": [], "pickQuestions": 0}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}