// Numbas version: finer_feedback_settings {"name": "diff by quotient rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variables": {"c": {"definition": "if(a*d=b*c1,c1+1,c1)", "description": "", "name": "c", "templateType": "anything", "group": "Ungrouped variables"}, "c1": {"definition": "random(1..8)", "description": "", "name": "c1", "templateType": "anything", "group": "Ungrouped variables"}, "b": {"definition": "s1*random(1..9)", "description": "", "name": "b", "templateType": "anything", "group": "Ungrouped variables"}, "d": {"definition": "s2*random(1..9)", "description": "", "name": "d", "templateType": "anything", "group": "Ungrouped variables"}, "det": {"definition": "a*d-b*c", "description": "", "name": "det", "templateType": "anything", "group": "Ungrouped variables"}, "a": {"definition": "random(2..9)", "description": "", "name": "a", "templateType": "anything", "group": "Ungrouped variables"}, "s1": {"definition": "random(1,-1)", "description": "", "name": "s1", "templateType": "anything", "group": "Ungrouped variables"}, "s2": {"definition": "random(1,-1)", "description": "", "name": "s2", "templateType": "anything", "group": "Ungrouped variables"}}, "statement": "

Differentiate the following function $f(x)$ using the quotient rule.

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "metadata": {"notes": "\n \t\t

1/08/2012:

\n \t\t

Added tags.

\n \t\t

Added description.

\n \t\t

Added information about Show steps. Altered to 0 marks lost rather than 1.

\n \t\t

Changed std rule set to include !noLeadingMinus, so polynomials don't change order. Got rid of a redundant ruleset.

\n \t\t

Improved display in various places.

\n \t\t

Added condition that numbers input as fractions or integers, so added decimal point ot forbidden strings.

\n \t\t", "licence": "Creative Commons Attribution 4.0 International", "description": "

The derivative of $\\displaystyle \\frac{ax+b}{cx^2+d}$ is of the form $\\displaystyle \\frac{g(x)}{(cx^2+d)^2}$. Find $g(x)$.

"}, "functions": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "scripts": {}, "showCorrectAnswer": true, "marks": 0, "stepsPenalty": 0, "gaps": [{"checkvariablenames": false, "vsetrange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "marks": 3, "answersimplification": "std", "type": "jme", "showpreview": true, "vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "checkingtype": "absdiff", "notallowed": {"message": "

Input all numbers as fractions or integers and not as decimals.

", "showStrings": false, "partialCredit": 0, "strings": ["."]}, "answer": "{-c*a}x^2+{-2*b*c}x+{a*d}"}], "steps": [{"type": "information", "scripts": {}, "showCorrectAnswer": true, "marks": 0, "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

"}], "prompt": "\n

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d})}\\]
You are given that \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d})^2}\\]
for a polynomial $g(x)$. You are asked to find $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Input all numbers as fractions or integers and not as decimals.

\n

Click on Show steps for more information. You will not lose any marks by doing so.

\n "}], "type": "question", "showQuestionGroupNames": false, "variable_groups": [], "advice": "\n \n \n

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n \n \n \n

For this example:

\n \n \n \n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n \n \n \n

\\[\\simplify[std]{v = ({c} * x^2+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x}\\]

\n \n \n \n

Hence on substituting into the quotient rule above we get:

\n \n \n \n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d})-{2*c}x({a}x+{b}))/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({a*c}x^2+{a*d}-{2*c*a}x^2-{2*c*b}x)/({c}x^2+{d})^2}\\\\\n \n &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*d})/({c}x^2+{d})^2}\n \n \\end{eqnarray*}\\]
Hence $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*d}}$

\n \n \n ", "question_groups": [{"pickingStrategy": "all-ordered", "pickQuestions": 0, "name": "", "questions": []}], "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "name": "diff by quotient rule", "tags": ["algebraic manipulation", "calculus", "Calculus", "checked2015", "derivative of a quotient", "differentiation", "MAS1601", "mas1601", "quotient rule", "Steps", "steps"], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Johnny Yi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2810/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Johnny Yi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2810/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}