// Numbas version: finer_feedback_settings {"name": "Luis's copy of Luis's copy of Luis's copy of Integration of fraction with power in denominator", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"variableReplacementStrategy": "originalfirst", "type": "gapfill", "marks": 0, "variableReplacements": [], "scripts": {}, "customMarkingAlgorithm": "", "sortAnswers": false, "showCorrectAnswer": true, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "prompt": "
$ I = \\ displaystyle \\ int \\ simplify [std] {({b} * x + {c}) / (({a} * x + {d}) ^ {n})} dx $
\nSe le da que \\ [I = \\ simplify [std] {g (x) * ({a} x + {d}) ^ {1-n}} + C \\] para un polinomio $ g (x) $.
\nTienes que encontrar $ g (x) $.
\n$ g (x) = \\; $
Recuerda ingresar todos los números como números enteros o fracciones.
", "unitTests": [], "gaps": [{"variableReplacementStrategy": "originalfirst", "type": "jme", "marks": 1, "variableReplacements": [], "failureRate": 1, "expectedVariableNames": [], "checkVariableNames": false, "vsetRange": [0, 1], "showPreview": true, "vsetRangePoints": 5, "customMarkingAlgorithm": "", "answer": "({-m}/{n-2})*x-{m*d*(n-1)+r*(n-2)}/{(n-2)*(n-1)*a}", "showCorrectAnswer": true, "answerSimplification": "std", "notallowed": {"message": "Do not input numbers as decimals, only as integers without the decimal point, or fractions
", "strings": ["."], "showStrings": false, "partialCredit": 0}, "showFeedbackIcon": true, "scripts": {}, "checkingAccuracy": 0.001, "checkingType": "absdiff", "unitTests": [], "extendBaseMarkingAlgorithm": true}]}], "extensions": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variable_groups": [], "tags": [], "name": "Luis's copy of Luis's copy of Luis's copy of Integration of fraction with power in denominator", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "functions": {}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"group": "Ungrouped variables", "definition": "random(2..5)", "templateType": "anything", "name": "a", "description": ""}, "n": {"group": "Ungrouped variables", "definition": "3", "templateType": "anything", "name": "n", "description": ""}, "s2": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "name": "s2", "description": ""}, "m": {"group": "Ungrouped variables", "definition": "s1*random(1..4)", "templateType": "anything", "name": "m", "description": ""}, "r": {"group": "Ungrouped variables", "definition": "s2*random(1..5)", "templateType": "anything", "name": "r", "description": ""}, "d": {"group": "Ungrouped variables", "definition": "random(1..5)", "templateType": "anything", "name": "d", "description": ""}, "c": {"group": "Ungrouped variables", "definition": "m*d+r", "templateType": "anything", "name": "c", "description": ""}, "b": {"group": "Ungrouped variables", "definition": "m*a", "templateType": "anything", "name": "b", "description": ""}, "s1": {"group": "Ungrouped variables", "definition": "random(1,-1)", "templateType": "anything", "name": "s1", "description": ""}}, "statement": "Encuentra la siguiente integral indefinida.
\nIngrese todos los números como números enteros o fracciones, no como decimales.
\n", "advice": "\n
Let $y = \\simplify[std]{{a}*x+{d}}$.
\nThen $x=\\frac{1}{\\var{a}}\\simplify[std]{(y-{d})}$ and so we have the numerator $\\simplify[std]{{b}*x+{c}}$ becomes in terms of $y$:
\n$\\simplify[std]{{b}*x+{c} = {b}*1/{a}*(y-{d})+{c}= {m}y+{r}}$ and so
\n\\[\\simplify[std]{({b}*x+{c})/(({a}*x+{d})^{n})} = \\simplify[std]{({m}*y+{r})/(y^{n})={m}/y^{n-1}+{r}/y^{n}}\\]
\nNow,
\\[\\int \\simplify[std]{({b}x+{c})/({a}*x+{d})^{n}} dx = \\int \\left(\\simplify[std]{{m}/y^{n-1}+{r}/y^{n}} \\right)\\frac{dx}{dy} dy \\]
Since $\\displaystyle x = \\simplify[std]{(y-{d})/{a}}$ then $\\displaystyle \\frac{dx}{dy} = \\frac{1}{\\var{a}}$.
\nWe can now calculate the desired integral:
\n\\[ \\begin{eqnarray*} \\int \\left(\\simplify[std]{{m}/y^{n-1}+{r}/y^{n}}\\right) \\frac{dx}{dy} dy &=&\\frac{1}{\\var{a}}\\left(\\int \\simplify[std]{{m}/y^{n-1}}\\;dy+\\int \\simplify[std]{{r}/y^{n}}\\;dy \\right)\\\\ &=&\\frac{1}{\\var{a}}\\left(\\simplify[std]{{-m}/({n-2}*y^{n-2})+ {-r}/({n-1}*y^{n-1})}\\right) + C \\\\ &=& \\simplify[std]{(-{m})/({a*(n-2)}*({a}*x+{d})^{n-2})+(-{r})/({a*(n-1)}*({a}*x+{d})^{n-1}) + C}\\\\ &=&\\simplify[std]{1/({a}x+{d})^{n-1}*(({-m}/{a*(n-2)})*({a}x+{d})-{r}/({a*(n-1)}))}\\\\ &=&\\simplify[std]{1/({a}x+{d})^{n-1}*(({-m}/{(n-2)})*x+{-m*d*(n-1)-r*(n-2)}/{(n-2)*(n-1)*a})} \\end{eqnarray*} \\]
Hence \\[g(x)=\\simplify[std]{({-m}/{(n-2)})*x+{-m*d*(n-1)-r*(n-2)}/{(n-2)*(n-1)*a}}\\]
$\\displaystyle \\int \\frac{bx+c}{(ax+d)^n} dx=g(x)(ax+d)^{1-n}+C$ for a polynomial $g(x)$. Find $g(x)$.
", "licence": "Creative Commons Attribution 4.0 International"}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "m", "n", "r"], "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}