// Numbas version: exam_results_page_options {"name": "Luis's copy of Oracle function estimation", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"showfrontpage": false, "preventleave": false, "allowregen": true}, "question_groups": [{"questions": [{"parts": [{"variableReplacements": [], "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "scripts": {}, "marks": 0, "showFeedbackIcon": true, "type": "gapfill", "sortAnswers": false, "prompt": "

Suppose I reveal that the function is a cubic, so that \$f(x) = a x^3 + b x^2 + c x + d\$. I will also tell you that \$\\{a,b,c,d\\} \\subset \\mathbb{Z}\$. Calculate the parameters \$a\$ to \$d\$.

\n

\$a = \$ [[0]]

\n

\$b = \$ [[1]]

\n

\$c = \$ [[2]]

\n

\$d = \$ [[3]]

Estoy pensando en una función, ¡pero no te diré lo que es! Pero:

\n
\n
1. Es al menos dos veces diferenciable.
2. \n
3. Le diré el valor de la función en cualquier lugar que solicite, con tres decimales. Puedes usar el cuadro de abajo para informarme. (Es posible que deba esperar un poco para que se cargue).
4. \n
\n

{geogebra_applet ('ufgKrAzb', defs)}

", "metadata": {"licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International", "description": "

Given an oracle function that will output its value given an input: first estimate the derivative, and second calculate its shape.

"}, "variables": {"c": {"group": "Ungrouped variables", "templateType": "randrange", "description": "", "name": "c", "definition": "random(-3..3#1)"}, "x_0": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "x_0", "definition": "random(-50 .. 50 except 0)/10"}, "ddf": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "ddf", "definition": "6*a*x_0+2*b"}, "defs": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "defs", "definition": "[\n ['a',a],\n ['b',b],\n ['c',c],\n ['d',d]\n]"}, "a": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "a", "definition": "random(-3..3 except 0)"}, "d": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "d", "definition": "random(-3..3)"}, "df": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "df", "definition": "3*a*x_0^2+2*b*x_0+c"}, "b": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "b", "definition": "random(-3..3)"}}, "preamble": {"js": "", "css": ""}, "rulesets": {}, "variablesTest": {"maxRuns": 100, "condition": ""}, "contributors": [{"name": "Philip Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/362/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}], "pickingStrategy": "all-ordered"}], "contributors": [{"name": "Philip Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/362/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}