// Numbas version: exam_results_page_options {"name": "Identifying different types of sequences", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "rulesets": {}, "extensions": [], "name": "Identifying different types of sequences", "functions": {}, "variable_groups": [{"variables": ["a1", "b1", "c2"], "name": "seq' eqn' question c)"}], "parts": [{"variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "type": "m_n_x", "displayType": "radiogroup", "prompt": "

¿Cuáles de estas secuencias son aritméticas y cuales son geométricas?

", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "layout": {"type": "all", "expression": ""}, "warningType": "none", "showCellAnswerState": true, "scripts": {}, "shuffleChoices": false, "maxMarks": 0, "answers": ["

Arithmetic

", "

Geometric

"], "marks": 0, "matrix": [[0, "1"], [0, "1"], ["1", 0], ["1", 0]], "unitTests": [], "minMarks": 0, "maxAnswers": 0, "shuffleAnswers": false, "minAnswers": 0, "showFeedbackIcon": true, "choices": ["

i) $\\var{c[0]}, \\var{c[0]^2}, \\var{c[0]^3}, \\var{c[0]^4}\\ldots$

", "

ii) $\\var{c[2]*c[3]}, \\var{c[2]*c[3]^2}, \\var{c[2]*c[3]^3}, \\var{c[2]*c[3]^4}\\ldots$

", "

iii) $\\var{c[1]*5}, \\var{c[1]*6}, \\var{c[1]*7}, \\var{c[1]*8}, \\ldots$

", "

iv) $\\var{c[2]*8}, \\var{c[2]*9}, \\var{c[2]*10}, \\var{c[2]*11} \\ldots$

Write out the next three terms in the triangle sequence

\n

$1, 3, 6, 10,$ [[0]], [[1]], [[2]]

", "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "steps": [{"prompt": "

The $n^{th}$ term of the triangle sequence is

\n

\$\\frac{n(n+1)}{2}\\text{.}\$

", "scripts": {}, "unitTests": [], "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "type": "information", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "marks": 0, "showCorrectAnswer": true}], "showCorrectAnswer": true, "showFeedbackIcon": true, "customMarkingAlgorithm": ""}, {"gaps": [{"scripts": {}, "failureRate": 1, "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "showPreview": true, "type": "jme", "marks": "1", "checkingAccuracy": 0.001, "vsetRangePoints": 5, "answer": "{a1}{ci[0]}({ci[0]}+{b1})/{c2}", "unitTests": [], "variableReplacements": [], "checkVariableNames": false, "checkingType": "absdiff", "expectedVariableNames": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "vsetRange": [0, 1], "customMarkingAlgorithm": ""}], "scripts": {}, "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "type": "gapfill", "marks": 0, "prompt": "

Find the $\\var{ci[0]}$th term of the sequence with formula:

\n

\$a_n=\\frac{\\var{a1}n(n+\\var{b1})}{\\var{c2}}\$

\n

$a_{\\var{ci[0]}}=$ [[0]]

Write out the next three terms of the following sequences.

\n

i)

\n

$1, 4, 9, 16, 25,$ [[0]], [[1]], [[2]]

\n

ii)

\n

$1, 8, 27, 64,$ [[3]], [[4]], [[5]]

", "extendBaseMarkingAlgorithm": true, "unitTests": [], "variableReplacements": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "customMarkingAlgorithm": ""}], "advice": "

#### una)

\n

Una secuencia lineal es una secuencia con una diferencia común constante, mientras que una secuencia cuadrática tiene una diferencia que aumenta o disminuye en un valor constante. Podemos calcular las diferencias entre términos construyendo tablas. Estas tablas se pueden usar para decidir si la secuencia es lineal o cuadrática.

\n

yo)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\ var {b [2] + n [2] + c [2]}$ $\\ var {b [2] * 2 ^ 2 + n [2] * 2 + c [2]}$ $\\ var {b [2] * 3 ^ 2 + n [2] * 3 + c [2]}$ $\\ var {b [2] * 4 ^ 2 + n [2] * 4 + c [2]}$ Diferencias entre términos $\\ var {b [2] * 2 ^ 2 + n [2] * 2 + c [2] -b [2] * 1 ^ 2-n [2] * 1-c [2]}$ $\\ var {b [2] * 3 ^ 2 + n [2] * 3 + c [2] -b [2] * 2 ^ 2-n [2] * 2-c [2]}$ $\\ var {b [2] * 4 ^ 2 + n [2] * 4 + c [2] -b [2] * 3 ^ 2-n [2] * 3-c [2]}$
\n

Si observamos las diferencias con este patrón, vemos que aumentan en $\\ var {2 * b [2]}$. A medida que las diferencias originales en la secuencia aumentan en una constante, la secuencia es cuadrática.

\n

\n

ii)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\ var {m [3] * 5}$ $\\ var {m [3] * 6}$ $\\ var {m [3] * 7}$ $\\ var {m [3] * 8}$ Diferencias entre términos $\\ var {m [3]}$ $\\ var {m [3]}$ $\\ var {m [3]}$
\n

Esta secuencia aumenta en $\\ var {m [3]}$ por lo tanto es lineal.

\n

\n

iii)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $a_n$ $\\ var {m [2] * 10}$ $\\ var {m [2] * 11}$ $\\ var {m [2] * 12}$ Diferencias entre términos $\\ var {m [2]}$ $\\ var {m [2]}$
\n

\n

iv)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\ var {b [4] * 1 ^ 2 + n [4] * 1 + c [4]}$ $\\ var {b [4] * 2 ^ 2 + n [4] * 2 + c [4]}$ $\\ var {b [4] * 3 ^ 2 + n [4] * 3 + c [4]}$ $\\ var {b [4] * 4 ^ 2 + n [4] * 4 + c [4]}$ Diferencias entre términos $\\ var {3 * b [4] + n [4]}$ $\\ var {5 * b [4] + n [4]}$ $\\ var {7 * b [4] + n [4]}$
\n

\n

Si observamos las diferencias con este patrón, vemos que aumentan en $\\ var {2 * b [4]}$. A medida que las diferencias originales en la secuencia aumentan en una constante, la secuencia es cuadrática.

\n

#### segundo)

\n

Las secuencias aritméticas se pueden identificar por el hecho de que tienen una diferencia común, mientras que las secuencias geométricas tienen una proporción común.

\n

yo)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\ var {c [0]}$ $\\ var {c [0] ^ 2}$ $\\ var {c [0] ^ 3}$ $\\ var {c [0] ^ 4}$ Diferencias entre términos $\\ var {c [0] ^ 2-c [0]}$ $\\ var {c [0] ^ 3-c [0] ^ 2}$ $\\ var {c [0] ^ 4-c [0] ^ 3}$
\n

\n

Esta secuencia tiene una proporción común de $\\ var {c [0]}$ por lo que la secuencia es geométrica.

\n

ii)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\ var {c [2] * c [3]}$ $\\ var {c [2] * c [3] ^ 2}$ $\\ var {c [2] * c [3] ^ 3}$ $\\ var {c [2] * c [3] ^ 4}$ Diferencias entre términos $\\ var {c [2] * c [3] ^ 2-c [2] * c [3]}$ $\\ var {c [2] * c [3] ^ 3-c [2] * c [3] ^ 2}$ $\\ var {c [2] * c [3] ^ 4-c [2] * c [3] ^ 3}$
\n

Esta secuencia tiene una proporción común de $\\ var {c [3]}$ por lo que la secuencia es geométrica.

\n

iii)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\\\ var {c [1] * 5}$ $\\ var {c [1] * 6}$ $\\ var {c [1] * 7}$ $\\ var {c [1] * 8}$ Diferencias entre términos $\\ var {c [1]}$ $\\ var {c [1]}$ $\\ var {c [1]}$
\n

Cada término en esta secuencia tiene una diferencia común de $\\ var {c [1]}$ por lo que la secuencia es aritmética.

\n

iv)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $\\ var {c [2] * 8}$ $\\ var {c [2] * 9}$ $\\ var {c [2] * 10}$ $\\ var {c [2] * 11}$ Diferencias entre términos $\\ var {c [2]}$ $\\ var {c [2]}$ $\\ var {c [2]}$
\n

Cada término en esta secuencia tiene una diferencia común de $\\ var {c [2]}$ por lo que la secuencia es aritmética.

\n

\n

#### do)

\n

Podemos usar una tabla para identificar la secuencia del triángulo por su característica de la diferencia entre los términos que aumentan en $1$ con cada término.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $a_n$ $1$ $3$ $6$ $10$ $a_5$ $a_6$ $a_7$ Diferencias entre términos $2$ $3$ $4$ $5$ $6$ $7$
\n

Luego podemos usar este patrón para continuar la secuencia e identificar los siguientes tres términos ($a_5$, $a_6$ y $a_7$).

\n

\\ [a_5 = a_4 + 5 = 15 \\]

\n

\\ [a_6 = a_5 + 6 = 21 \\]

\n

\\ [a_7 = a_6 + 7 = 28 \\]

\n

O

\n

Podemos usar la fórmula para el término $n ^ {th}$ de la secuencia del triángulo

\n

\\ [\\ frac {n (n + 1)} {2} \\ text {.} \\]

\n

para encontrar los $5to, 6to \\; \\ text {y} \\; Términos de$ 7.

\n

\\ [\\ begin {align}
\\ frac {5 (5 + 1)} {2} & = 15 \\\\
\\ frac {6 (6 + 1)} {2} & = 21 \\\\
\\ frac {7 (7+ 1)} {2} & = 28
\\ end {alinear} \\]

\n

#### re)

\n

\n

Para encontrar la respuesta a esta pregunta, debemos sustituir nuestro valor por n ($\\ var {ci [0]}$) en la fórmula para la secuencia que ya se nos ha dado:

\n

\\ [a_n = \\ frac {\\ var {a1} n (n + \\ var {b1})} {\\ var {c2}} \\ text {.} \\]

\n

Por lo tanto:

\n

\\ [
\\ begin {align}
a _ {\\ var {ci [0]}} & = \\ frac {\\ var {a1} n (n + \\ var {b1})} {\\ var {c2}} \\\\
& = \\ frac {\\ var {a1} \\ times \\ var {ci [0]} (\\ var {ci [0]} + \\ var {b1})} {\\ var {c2}} \\\\
& = \\ simplify {{{ a1} * {ci [0]} * ({ci [0]} + {b1})} / {c2}}
\\ end {align}
\\]

\n

\n

#### mi)

\n

yo)

\n

Podemos analizar la secuencia utilizando una tabla para visualizar cada término con la diferencia entre sí y el término anterior.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $5$ $a_n$ $1$ $4$ $9$ $16$ $25$ Diferencias entre términos $3$ $5$ $7$ $9$
\n

Observamos que la diferencia entre los términos aumenta con cada término, y al observar cuidadosamente la secuencia, podemos darnos cuenta de que esta es una secuencia cuadrada que significa que cada término se ha cuadrado para obtener su valor.

\n

\\ [\\ begin {align}
1 ^ 2 & = 1 \\\\
2 ^ 2 & = 4 \\\\
3 ^ 2 & = 9 \\\\
4 ^ 2 & = 16 \\\\
5 ^ 2 & = 25
\\ end {align} \\]

\n

Por lo tanto para obtener los siguientes tres valores tenemos que cuadrar los valores.

\n

\\ [\\ begin {align}
6 ^ 2 & = 36 \\\\
7 ^ 2 & = 49 \\\\
8 ^ 2 & = 64 \\ text {.}
\\ end {align} \\]

\n

ii)

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
 $n$ $1$ $2$ $3$ $4$ $a_n$ $1$ $8$ $27$ $64$ Diferencias entre términos $7$ $21$ $37$
\n

Observamos que la diferencia entre los términos aumenta con cada término, y al observar cuidadosamente la secuencia, podemos darnos cuenta de que se trata de una secuencia cúbica que significa que cada término se ha dividido en cubos para obtener su valor.

\n

\\ [\\ begin {align}
1 ^ 3 & = 1 \\\\
2 ^ 3 & = 8 \\\\
3 ^ 3 & = 27 \\\\
4 ^ 3 & = 64
\\ end {align} \\]

\n

Por lo tanto, para obtener los siguientes tres valores tenemos que calcular los valores

\n

\\ [\\ begin {align}
5 ^ 3 & = 125 \\\\
6 ^ 3 & = 216 \\\\
7 ^ 3 & = 343 \\ text {.}
\\ end {align} \\]

\n

", "tags": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Diferenciar entre secuencias aritméticas y geométricas a través de una serie de preguntas de opción múltiple. Localice diferentes patrones en secuencias como la secuencia de triángulos, la secuencia cuadrada y la secuencia cúbica y luego use este patrón para encontrar las siguientes funciones en cada una de las secuencias.

"}, "statement": "

Una secuencia es una lista de números que siguen un patrón. Diferentes tipos de secuencias siguen patrones diferentes, por ejemplo, algunos aumentan en una cantidad constante de término a término y otros siguen a regla de multiplicar el término anterior por una constante para encontrar el siguiente término.

", "variables": {"ni": {"definition": "repeat(random(19..40),10)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "ni"}, "c2": {"definition": "random(2..5)", "templateType": "anything", "group": "seq' eqn' question c)", "description": "", "name": "c2"}, "ci": {"definition": "repeat(random(3..9 except 5)c2,10)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "ci"}, "m": {"definition": "repeat(random(2..10),5)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "m"}, "n": {"definition": "repeat(random(1..4),7)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "n"}, "b": {"definition": "repeat(random(2..4), 5)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "b"}, "a1": {"definition": "random(2..5)", "templateType": "anything", "group": "seq' eqn' question c)", "description": "", "name": "a1"}, "b1": {"definition": "random(2..7)c2", "templateType": "anything", "group": "seq' eqn' question c)", "description": "", "name": "b1"}, "c": {"definition": "repeat(random(3..13 except[10]),8)", "templateType": "anything", "group": "Ungrouped variables", "description": "", "name": "c"}}, "variablesTest": {"maxRuns": 100, "condition": ""}, "ungrouped_variables": ["m", "n", "c", "ci", "ni", "b"], "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}