// Numbas version: finer_feedback_settings {"name": "Jean jinhua's copy of Basic Indefinite Integration with Anti-Chain Rule", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "variablesTest": {"condition": "", "maxRuns": 100}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "statement": "
Integrate the following function $f(x)$.
\n
You must put bracket to the power of $e$, and input the constant of integration as $C$.
Splitting the integral into three parts and using the information in Steps we have:
\n\\[\\begin{eqnarray*}\\simplify[std]{Int({b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3},x)}&=&\\simplify[std]{Int({b} * e ^ ({a}*x),x)+Int({b1} * Sin({a1}*x),x)+Int({a2} * x ^ {c3},x) }\\\\ &=&\\simplify[std]{({b}/{a}) * (e ^({a}*x)) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C} \\end{eqnarray*}\\]
\n ", "variable_groups": [], "ungrouped_variables": ["a", "b", "s3", "s2", "s1", "s5", "s4", "a1", "a2", "b1", "c3"], "parts": [{"unitTests": [], "showCorrectAnswer": true, "gaps": [{"unitTests": [], "vsetRangePoints": 5, "showCorrectAnswer": true, "failureRate": 1, "answerSimplification": "std", "expectedVariableNames": [], "customMarkingAlgorithm": "", "showFeedbackIcon": true, "showPreview": true, "vsetRange": [0, 1], "extendBaseMarkingAlgorithm": true, "type": "jme", "scripts": {}, "checkingAccuracy": 0.001, "notallowed": {"showStrings": false, "partialCredit": 0, "message": "Enter all numbers as integers or fractions and not as decimals.
", "strings": ["."]}, "variableReplacementStrategy": "originalfirst", "answer": "({b}/{a}) * e ^({a}*x) + (({(-b1)}/{a1}) * Cos({a1}*x)) + ({a2}/{c3+1}) * (x ^ {(c3 + 1)})+C", "checkingType": "absdiff", "variableReplacements": [], "marks": 3, "checkVariableNames": false}], "customMarkingAlgorithm": "", "showFeedbackIcon": true, "stepsPenalty": 0, "prompt": "\n$\\simplify[std]{f(x) = {b} * e ^ ({a}*x) + {b1} * Sin({a1}*x) + {a2} * x ^ {c3}}$
\n$\\displaystyle \\int\\;f(x)\\,dx=\\;$[[0]]
\nEnter all numbers as integers or fractions and not as decimals.
\n ", "type": "gapfill", "scripts": {}, "steps": [{"unitTests": [], "variableReplacementStrategy": "originalfirst", "scripts": {}, "showCorrectAnswer": true, "type": "information", "variableReplacements": [], "prompt": "Note that \\[\\begin{eqnarray*} &\\int& \\;x^n\\;dx&=&\\frac{x^{n+1}}{n+1}+C,\\;\\;n \\neq -1\\\\ &\\int& \\;\\sin(ax)\\;dx &=& -\\frac{1}{a}\\cos(ax)+C\\\\ &\\int& \\;e^{ax}\\;dx &=& \\frac{1}{a}e^{ax}+C\\\\ \\end{eqnarray*}\\]
", "customMarkingAlgorithm": "", "showFeedbackIcon": true, "marks": 0, "extendBaseMarkingAlgorithm": true}], "variableReplacementStrategy": "originalfirst", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "marks": 0, "sortAnswers": false}], "metadata": {"description": "Integrate $f(x) = ae ^ {bx} + c\\sin(dx) + px^q$. Must input $C$ as the constant of integration.
", "licence": "Creative Commons Attribution 4.0 International"}, "name": "Jean jinhua's copy of Basic Indefinite Integration with Anti-Chain Rule", "functions": {}, "variables": {"s3": {"description": "", "name": "s3", "templateType": "anything", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "s4": {"description": "", "name": "s4", "templateType": "anything", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "a1": {"description": "", "name": "a1", "templateType": "anything", "definition": "random(2..5)", "group": "Ungrouped variables"}, "s5": {"description": "", "name": "s5", "templateType": "anything", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "c3": {"description": "", "name": "c3", "templateType": "anything", "definition": "s5*random(2..8)", "group": "Ungrouped variables"}, "s1": {"description": "", "name": "s1", "templateType": "anything", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "s2": {"description": "", "name": "s2", "templateType": "anything", "definition": "random(1,-1)", "group": "Ungrouped variables"}, "a": {"description": "", "name": "a", "templateType": "anything", "definition": "s1*random(2..5)", "group": "Ungrouped variables"}, "b": {"description": "", "name": "b", "templateType": "anything", "definition": "s2*random(2..9)", "group": "Ungrouped variables"}, "a2": {"description": "", "name": "a2", "templateType": "anything", "definition": "s4*random(3..9)", "group": "Ungrouped variables"}, "b1": {"description": "", "name": "b1", "templateType": "anything", "definition": "s3*random(2..9)", "group": "Ungrouped variables"}}, "tags": [], "type": "question", "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/353/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Johnny Yi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2810/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Jinhua Mathias", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/353/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Johnny Yi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2810/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}