// Numbas version: finer_feedback_settings {"name": "CLE9. True false", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"variableReplacements": [], "shuffleChoices": true, "warningType": "none", "maxMarks": "0", "shuffleAnswers": false, "variableReplacementStrategy": "originalfirst", "extendBaseMarkingAlgorithm": true, "showCorrectAnswer": true, "layout": {"expression": "", "type": "all"}, "scripts": {}, "minAnswers": "{n}", "unitTests": [], "marks": 0, "showFeedbackIcon": true, "answers": ["
True
", "False
"], "prompt": "Which of the following are true and which are false? If you are unsure of something, find out the answer instead of guessing. A single error will result in a score 0 for the whole question. If you are unable to find out or understand the answer, you are welcome to ask me for help or advice.
\n\nIn the following, $f(x) = \\sin(x)$ and $g(t) = \\cos(t)$.
", "choices": "{statements}", "type": "m_n_x", "customMarkingAlgorithm": "", "matrix": "{marks}", "maxAnswers": 0, "showCellAnswerState": true, "displayType": "radiogroup", "minMarks": 0}], "extensions": [], "variables": {"rand": {"definition": "repeat(random(0..1),n)", "name": "rand", "templateType": "anything", "group": "do not change these", "description": ""}, "b": {"definition": "random(10..18)+random(1..9)/10", "name": "b", "templateType": "anything", "group": "change these", "description": ""}, "statements_false": {"definition": "[\"$\\\\frac{dx}{df} = \\\\cos(x)$\",\n \"$\\\\frac{dg}{dx} = -\\\\sin(t)$ \",\n \"$\\\\frac{df}{dx} = df \\\\div dx$ \",\n \"$f'(x) = -\\\\cos(x)$\",\n \"$g'(t) = \\\\sin(t)$\",\n \"The derivative of $\\\\frac{1}{x^5}$ is $\\\\frac{1}{5x^4}$\",\n \"The derivative of $x^2 \\\\sin(x)$ is $2x \\\\cos(x) $\",\n \"When adding up a geometric series using the reasoning from lectures, you re-write the original sum underneath but in reverse order\",\n \"In a non-calculator question, if the numbers are very complicated you should spend time calculating its exact value\",\n \"$f'(0)=0$\",\n \"$g'(0)=-1$\",\n \"The derivative of $\\\\sqrt{x}$ is explicitly stated in the formula sheet\"\n]", "name": "statements_false", "templateType": "anything", "group": "change these", "description": ""}, "statements_true": {"definition": "[\"$\\\\frac{df}{dx} = \\\\cos(x)$\",\n \"$\\\\frac{dg}{dt} = -\\\\sin(t)$ \",\n \"$\\\\frac{df}{dx}$ should not be treated like a fraction\",\n \"$f'(x) = \\\\cos(x)$\",\n \"$g'(t) = -\\\\sin(t)$\",\n \"The derivative of $\\\\frac{1}{x^5}$ is determined by re-writing it as $x^{-5}$\",\n \"To differentiate $x^2 \\\\sin(x)$ you use the product rule\",\n \"When adding up a geometric series using the reasoning from lectures, you obtain lots of cancellation when you do the subtraction step\",\n \"In a non-calculator question, if the numbers are very complicated you should just leave your answer in the simplest form\",\n \"$f'(0)=1$\",\n \"$g'(0)=0$\",\n \"The derivative of $\\\\sqrt{x}$ is not explicitly stated in the formula sheet\"\n]\n ", "name": "statements_true", "templateType": "anything", "group": "change these", "description": ""}, "a": {"definition": "random(3..7)", "name": "a", "templateType": "anything", "group": "change these", "description": ""}, "n": {"definition": "length(statements_true)", "name": "n", "templateType": "anything", "group": "change these", "description": ""}, "c": {"definition": "random(6..9)", "name": "c", "templateType": "anything", "group": "change these", "description": ""}, "max_mark": {"definition": "10", "name": "max_mark", "templateType": "anything", "group": "change these", "description": ""}, "statements": {"definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)", "name": "statements", "templateType": "anything", "group": "do not change these", "description": ""}, "marks": {"definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark/3+max_mark/n],[-max_mark/3+max_mark/n,max_mark/n]),j,0..n-1))\n", "name": "marks", "templateType": "anything", "group": "do not change these", "description": ""}}, "functions": {}, "tags": [], "variable_groups": [{"name": "change these", "variables": ["statements_true", "statements_false", "max_mark", "n", "a", "b", "c"]}, {"name": "do not change these", "variables": ["rand", "statements", "marks"]}], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "15 questions based on module so far.
"}, "ungrouped_variables": [], "variablesTest": {"condition": "", "maxRuns": 100}, "name": "CLE9. True false", "preamble": {"js": "", "css": ""}, "advice": "See all the lectures and workshops up to this point.
", "rulesets": {}, "statement": "", "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}