// Numbas version: finer_feedback_settings {"name": "Exprese lo siguiente en la forma $ a + bi \\; $ donde $ a $ y $ b $ son reales.", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Exprese lo siguiente en la forma $ a + bi \\; $ donde $ a $ y $ b $ son reales.", "tags": [], "metadata": {"description": "
Ejemplos elementales de multiplicación y suma de números complejos.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Exprese lo siguiente en la forma $ a + bi \\; $ donde $ a $ y $ b $ son reales.
\nNo incluya decimales en sus respuestas, solo fracciones o enteros. Tampoco incluya corchetes en sus respuestas. recuerde que $i^2=-1$
", "advice": "a)
La fórmula para multiplicar números complejos es
\\[\\begin{eqnarray*}\\simplify[]{Re((a + ib)(c + id))} &=& ac -bd \\\\ \\simplify[]{Im((a + ib)(c + id))} &=& ad +bc \\end{eqnarray*} \\]
Entonces tenemos:
\\[\\begin{eqnarray*}\\simplify[]{Re({a}*{b})} &=& \\simplify[]{{Re(a)}*{Re(b)} - {Im( a)}*{Im(b)} = {Re(a*b)}}\\\\ \\simplify[]{Im({a}*{b})} &=& \\simplify[]{{Re(a)}*{Im(b)} + {Im( a)}*{Re(b)} = {Im(a*b)}} \\end{eqnarray*} \\]
Hence the solution is :
\\[(\\simplify[std]{{a}})(\\simplify[std]{{b}})=\\var{a*b}\\]
b)
Esto se calcula de manera similar una vez que la expresión se escribe como:
\n$(\\simplify[std]{{a1}})^2= (\\simplify[std]{{a1}}) (\\simplify[std]{{a1}})$ then we find:
\n\\[\\begin{eqnarray*}(\\simplify[std]{{a1}})^2&=& (\\simplify[std]{{a1}}) (\\simplify[std]{{a1}})\\\\ &=& \\simplify[]{({Re(a1)}*{Re(a1)} - {Im(a1)}*{Im(a1)})+ ({Re(a1)}*{Im(a1)} + {Im(a1)}*{Re(a1)})i}\\\\ &=& \\simplify[std]{{a1^2}} \\end{eqnarray*} \\]
c)
Sabemos que $ i^2 = -1 $ lo que da $ i^3 = i^2 i = -i$.
Por lo tanto:
\\[ \\begin{eqnarray*} \\simplify[std,!otherNumbers]{{a3} + {b3} * i + {c3} * i ^ 2 + {d3} * i ^ 3}&=&\\simplify[std]{{a3} + {b3} * i -{c3} -({d3} * i)}\\\\ &=&\\simplify[std]{ {a3} -{c3} + ({b3} -{d3}) * i}\\\\ &=&\\simplify[std]{{a3 -c3} + {b3 -d3} * i} \\end{eqnarray*} \\]
d)
Esto se puede calcular usando la fórmula dos veces, primero para multiplicar los dos primeros conjuntos de paréntesis,
y luego multiplicar el resultado de ese cálculo por el tercer conjunto de paréntesis.
Así obtenemos:
\n\\[ \\begin{eqnarray*} (\\var{z1})(\\var{z2})(\\var{z3})&=&((\\var{z1})(\\var{z2}))(\\var{z3})\\\\ &=&(\\var{z1*z2})(\\var{z3})\\\\ &=&\\var{z1*z2*z3} \\end{eqnarray*} \\]
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"]}, "extensions": [], "variables": {"d3": {"name": "d3", "group": "Ungrouped variables", "definition": "s4*random(1..9)", "description": "", "templateType": "anything"}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "s3*random(1..9)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "z3": {"name": "z3", "group": "Ungrouped variables", "definition": "s6*random(1..9)+e6*i", "description": "", "templateType": "anything"}, "z2": {"name": "z2", "group": "Ungrouped variables", "definition": "s2*random(1..9)+d6*i", "description": "", "templateType": "anything"}, "z1": {"name": "z1", "group": "Ungrouped variables", "definition": "s3*random(1..9)+f6*i", "description": "", "templateType": "anything"}, "s3": {"name": "s3", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "f6": {"name": "f6", "group": "Ungrouped variables", "definition": "s4*random(1..4)", "description": "", "templateType": "anything"}, "s6": {"name": "s6", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "s1*random(1..9)+ s4*random(1..9)*i", "description": "", "templateType": "anything"}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything"}, "e6": {"name": "e6", "group": "Ungrouped variables", "definition": "s3*random(1..4)", "description": "", "templateType": "anything"}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "s1*random(1..9)+s2*random(1..9)*i", "description": "", "templateType": "anything"}, "d6": {"name": "d6", "group": "Ungrouped variables", "definition": "s1*random(1..4)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s3*random(1..9)+s4*random(1..9)*i", "description": "", "templateType": "anything"}, "s4": {"name": "s4", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "f6", "s3", "s2", "s1", "d3", "s6", "s4", "a1", "c3", "a3", "b3", "d6", "e6", "z1", "z2", "z3"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$(\\simplify[std]{{a}})(\\simplify[std]{{b}})\\;=\\;$[[0]].
\n\n
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a*b}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": [".", "(", ")"], "showStrings": false, "partialCredit": 0, "message": "
Do not include decimals in your answers, only fractions or integers. Also do not include brackets in your answers.
"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$(\\simplify[std]{{a1}})^2\\;=\\;$[[0]].
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({a1^2})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": [".", ")", "("], "showStrings": false, "partialCredit": 0, "message": "Do not include decimals in your answers, only fractions or integers. Also do not include brackets in your answers.
"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify[std,!otherNumbers]{{a3} + {b3} * i + {c3} * i ^ 2 + {d3} * i ^ 3}\\;=\\;$[[0]].
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{{a3} + {b3} * i + {c3} * i ^ 2 + {d3} * i ^ 3}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": [".", ")", "("], "showStrings": false, "partialCredit": 0, "message": "Do not include decimals in your answers, only fractions or integers. Also do not include brackets in your answers.
"}, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$(\\simplify[std]{{z1}}) (\\simplify[std]{{z2}}) (\\simplify[std]{{z3}})\\;=\\;$[[0]].
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{z1*z2*z3}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": [".", ")", "("], "showStrings": false, "partialCredit": 0, "message": "\nDo not include decimals in your answers, only fractions or integers. Also do not include brackets in your answers.
\n\n "}, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}