// Numbas version: finer_feedback_settings {"name": "Utilice las potencias $i $ para resolver lo siguiente...", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Utilice las potencias $i $ para resolver lo siguiente...", "tags": [], "metadata": {"description": "
Operaciones combinadas con números complejos.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Utilice las potencias $i $ para resolver y escriba su respuesta en la real-imaginaria ($ a + bi $).
", "advice": "Para escribir $z=\\frac{1+i}{1-i}$ en la forma real - imaginaria, multiplicamos $z$ por el complejo conjugado del denominador, obtenemos
\n\\[z=\\frac{(1+i)(1+i)}{(1-i)(1+i)}=\\frac{1+2i-1}{1+1}=i.\\]
\nLa expresión $z=\\left(\\frac{1+i}{1-i}\\right)^\\var{a}$ en forma real - imaginaria, usamos la parte a), de modo que solo necesitamos escribir $ i^\\var{a} $ en forma real-imaginaria.
\nEl resultado de aumentar $ i $ a un entero arbitrario $n$ se puede determinar usando el hecho de que $i^2=-1$, $i^3=-i$, y $i^4=i$.
\nDivida la potenciapor $4$ y calcule el resto (i.e. calcular $n\\mod4$), que puede ser uno de estos valores $0$, $1$, $2$, or $3$.
\nSi el resto es $0$, entonces $i^n=1$;
\nsi el resto es $1$, entonces $i^n=i$;
\nsi el resto es $2$, entonces $i^n=-1$;
\nsi el resto es $3$, entonces $i^n=-i$.
\nPor lo tanto, $n \\bmod 4 =\\var{moda4}$, so $i^\\var{a}=\\simplify{i^{a}}$.
\nUsando el método de la parte b), $n \\bmod 4=\\var{n} \\bmod 4=\\var{modn4}$, así $i^{\\var{n}}=i^{\\var{modn4}}=\\simplify{i^{modn4}}$.
", "rulesets": {}, "extensions": [], "variables": {"modn4": {"name": "modn4", "group": "Ungrouped variables", "definition": "mod(n,4)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "7000+random(1..4)", "description": "", "templateType": "anything"}, "moda4": {"name": "moda4", "group": "Ungrouped variables", "definition": "mod(a,4)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "n", "moda4", "modn4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\frac{1+i}{1-i}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "i", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\left(\\frac{1+i}{1-i}\\right)^\\var{a}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "i^{a}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\left(\\frac{1+i}{1-i}\\right)^{\\var{n}}=$ [[0]]
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "i^{modn4}", "answerSimplification": "all", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}