// Numbas version: finer_feedback_settings {"name": "Determina la ecuaci\u00f3n de la l\u00ednea recta que pasa por los puntos $ A (\\var {a}, \\var {b}) $ y $ B (\\var {c}, \\var {d}) $: \u00a0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Determina la ecuaci\u00f3n de la l\u00ednea recta que pasa por los puntos $ A (\\var {a}, \\var {b}) $ y $ B (\\var {c}, \\var {d}) $: \u00a0", "tags": [], "metadata": {"description": "

Encuentra la ecuación de la línea recta que pasa por los puntos $ (a, b) $ y $ (c, d) $.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Determina la ecuación de la línea recta que pasa por los puntos $ A (\\var {a}, \\var {b}) $ y $ B (\\var {c}, \\var {d}) $:

\n

 
Ingrese su respuesta en la forma $ mx + c $ para los valores correspondientes de $ m $ y $ c $.

\n

Indicación

\n

Ingrese $ m $ y $ c $ como fracciones o enteros según sea apropiado y no como decimales.

\n

Si ingresa $ m $ como fracción, ponga corchetes () alrededor de la fracción. Por ejemplo, si su respuesta para $ m $ es $ \\dfrac {-2} {3} $ y su respuesta para $ c $ es $ \\dfrac {7} {5} $, debe escribir $ (- 2/3) x + 7/5 $.

\n

Haga clic en Mostrar pasos si necesita ayuda

", "advice": "

La ecuación de la recta es de la forma. $y=mx+c$.

\n

Calcula la pendiente $m=\\dfrac{\\var{d}-(\\var{b})}{\\var{c}-(\\var{a})}=\\dfrac{\\var{d-b}}{\\var{c-a}}$ entre los puntos dados y luego determina el término constante $c$ notando que $y=\\var{b}$ cuando $x=\\var{a}$.

\n

Usando esto obtenemos:
\\[ \\begin{eqnarray} \\var{b}&=&\\simplify[std]{({b-d}/{a-c}){a}+c} \\Rightarrow\\\\ c&=&\\simplify[std]{{b}-({b-d}/{a-c}){a}={(b*c-a*d)}/{(c-a)}} \\end{eqnarray} \\]

\n

De ahí que la ecuación de la recta sea
\\[y = \\simplify[std]{({b-d}/{a-c})x+{b*c-a*d}/{c-a}}\\]

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "if(b1=d,b1+random(1..3),b1)", "description": "", "templateType": "anything", "can_override": false}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "(b-d)/(a-c)", "description": "", "templateType": "anything", "can_override": false}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "(b*c-a*d)/(c-a)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,-1)*random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "a+Random(1..4)*s1", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything", "can_override": false}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(-1,1)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "s1", "b1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$y=\\;\\phantom{{}}$[[0]]

", "stepsPenalty": 1, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "\n

The equation of the line is of the form $y=mx+c$.

\n

Calculate the gradient $m$ between the given points and then calculate the constant term $c$ by noting that $y=\\var{b}$ when $x=\\var{a}$.

\n "}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 2, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "({b-d}/{a-c})x+{b*c-a*d}/{c-a}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input all numbers as fractions or integers as appropriate and not as decimals.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}