// Numbas version: finer_feedback_settings {"name": "Hallar la ecuaci\u00f3n de una recta perpendicular a otra", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Hallar la ecuaci\u00f3n de una recta perpendicular a otra", "tags": [], "metadata": {"description": "
Encuentre la ecuación de recta perpendicular a una recta dada que pasa por el punto $ (a, b) $.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Encuentra la ecuación de la recta que:
\nIngrese su respuesta en la forma $mx + c$ para los valores adecuados de $ m $ y $ c $.
\nIndicación.
\nIngrese $m$ y $c$ como fracciones o enteros según sea apropiado y no como decimales.
\nSi ingresa $m$ como fracción, ponga corchetes () alrededor de la fracción. Por ejemplo, si su respuesta para $m$ es $ \\dfrac{-2}{3} $ y su respuesta para $c$ es $ \\dfrac{7}{5} $, debe escribir $ (- 2/3) )x + 7/5 $.
\nHaga clic en Mostrar pasos si necesita ayuda.
", "advice": "La ecuación de la recta es de la forma. $y=mx+c$.
\nLa pendiente $m$ será $\\dfrac{-1}{n}$ donde $n$ es la pendiente de la recta $\\displaystyle \\simplify{{(b-d)/n2}x+{(c-a)/n2}y={(b*c-a*d)/n2}}$, donde $\\displaystyle n= \\simplify{{b-d}/{a-c}}$. Habiendo calculado $n$, calculamos $\\displaystyle m=\\dfrac{-1}{n} = \\simplify{{a-c}/{d-b}}$. Podemos calcular el término constante $c$ notando que $y=\\var{k}$ when $x=\\var{h}$.
\n\\[ \\begin{eqnarray} \\var{k}&=&\\simplify[std]{({a-c}/{d-b}){h}+c} \\Rightarrow\\\\ c&=&\\simplify[std]{{k}-({a-c}/{d-b}){h}={c*h-a*h+d*k-b*k}/{d-b}} \\end{eqnarray} \\]
\n\\[y = \\simplify[std]{({a-c}/{d-b})x+{c*h-a*h+d*k-b*k}/{d-b}}\\]
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "h": {"name": "h", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "g": {"name": "g", "group": "Ungrouped variables", "definition": "(b*c-a*d)/(c-a)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(d1..11)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "a+Random(1..4)*s1", "description": "", "templateType": "anything"}, "d1": {"name": "d1", "group": "Ungrouped variables", "definition": "d+1", "description": "", "templateType": "anything"}, "k": {"name": "k", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,-1)*random(1..4)", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "(b-d)/(a-c)", "description": "", "templateType": "anything"}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "gcd(b-d,c-a)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(-1,1)", "description": "", "templateType": "anything"}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "if(b*c=a*d,1,gcd(n1,b*c-a*d))", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "g", "f", "h", "s1", "n1", "n2", "k", "d1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$y=\\;\\phantom{{}}$[[0]]
", "stepsPenalty": 1, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "La ecuación de la línea es de la forma $ y = mx + c $.
La pendiente $ m $ será el $\\dfrac {-1} {n}$ donde $n$ es la pendiente de la recta $ \\displaystyle \\simplify {{(b*d) / n2} x + {(c*a) / n2} y = {(b * c*a * d) / n2}} $, así que podemos comenzar calcular la pendiente de la segunda recta. Habiendo calculado $n$, calcule $ m = \\dfrac {-1} {n} $ y finalmente calcule el término constante $c$ observando que $ y = \\var {k} $ cuando $ x = \\var {h} $
Input all numbers as fractions or integers as appropriate and not as decimals.
"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}