// Numbas version: finer_feedback_settings {"name": "Dadas las ecuaciones de rectas paralelas....", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Dadas las ecuaciones de rectas paralelas....", "tags": [], "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Considera las rectas: $ A_0 $ , $B_0$, $C_0$ y $E_0 $ que aparecen en el gráfico y usa estas ecuaciones para decidir cuales son paralelas.

\n

{geogebra_applet('WuavQqEG',[[\"m1\",m1],[\"m2\",m2],[\"m3\",m3],[\"c1\",c1],[\"c2\",c2],[\"c3\",c3],[\"c4\",c4],[\"c5\",c5],[\"f1\",f1],[\"d1\",d1],[\"a1\",a1],[\"b1\",b1]])}

", "advice": "

a)

\n

Parallel lines are defined as lines that remain the same distance apart and so they never meet. This means that their gradient is the same.

\n

If we write our line equations in the form $y_i=m_i\\times x_i+c_i$, then for parallel lines, $m_1=m_2$.

\n

Vertical lines are always parallel to the $y$-axis and horizontal lines are always parallel to the $x$-axis.

\n

b)

\n

All but one of the straight lines above follow the general formula $y=mx+c$ where $m$ is a constant denoting the gradient of the line and $c$ is a constant denoting the $y$-intercept of the line. 

\n

The gradient (given by $m$), indicates the slope of a straight line. Where this is positive, the $y$-coordinate along the line increases by $m$ for every increase in the value of $x$ by $1$. For example, $y=3x$ indicates that for every increase in the value of $x$ by $1$, the value of $y$ increases by $3$. Where there is no $m$ (i.e. $y=c$), the line is horizontal as the value of $y$ has no dependence on the value of $x$.

\n

The $y$-intercept (given by $c$), indicates the point where the line passes through the $y$-axis. If the line equation has no $c$ (i.e. $y=mx$), the line has a $y$ intercept of $0$ (passing through the origin).

\n

We can use our knowledge of the slope of the line and the $y$-intercept to then judge which points on the graph correspond to which equations.

\n

A:

\n

$y=\\simplify{{m1}x+{c1}}$  gives us $m=\\var{m1}$ and $c=\\var{c1}$.

\n

B:

\n

$y=\\simplify{{m2}x+{c2}}$  gives us $m=\\var{m2}$ and $c=\\var{c2}$.

\n

C:

\n

$y=\\simplify{{m3}x+{c3}}$  gives us $m=\\var{m3}$ and $c=\\var{c3}$.

\n

D:

\n

$y=\\simplify{{c4}}$  gives us $m=0$ and $c=\\var{c1}$.

\n

E:

\n

$x=\\var{c5}$  is the exception to the $y=mx+c$ form of writing straight line equations. This equation gives a value for $x$ independent of the value of $y$, so a vertical line is formed at the $x$-coordinate $\\var{c5}$.

\n

c)

\n

For the equation $y=\\var{cfake}$, the gradient is $0$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find $D_0$ has the same gradient. Therefore $D_0$ is parallel to $y=\\var{cfake}$.

\n

d)

\n

For the equation $y=\\var{m1}x+\\var{cpar}$, the gradient is $\\var{m1}$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find both $A_0$ and $B_0$ have the same gradient. Therefore $A_0$ and $B_0$ are parallel to $y=\\var{m1}x+\\var{cpar}$.

\n

e)

\n

This time, we have to find the gradient of the $x$-axis. Note that the $x$-axis is equivalent to the line with equation $y=0$. The gradient of this line is $0$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find $D_0$ has the same gradient. Therefore $D_0$ is parallel to $y=0$ and in other words, $D_0$ is parallel to the $x$-axis.

\n

f)

\n

For the equation $y=\\simplify{{muniq}x+{c1}}$, the gradient is $\\var{muniq}$, so we check our lines $A_0, B_0, C_0, D_0 \\text{ and }E_0$ to find none have the same gradient. Therefore none of the labelled lines are parallel to $y=\\simplify{{muniq}x+{c1}}$.

\n

g)

\n

Lines that are parallel have the same gradient. This is represented by $m$ in the general form of a straight line ($y=mx+c$). The gradient of $C_0$ was $\\var{m3}$, so any straight line parallel to $C_0$ will share this value for $m$.

\n

Therefore, we input $y=\\var{m3}x+c$.

", "rulesets": {}, "extensions": ["geogebra"], "variables": {"m1": {"name": "m1", "group": "Gradient", "definition": "random(1..2#0.1)", "description": "", "templateType": "anything"}, "b1": {"name": "b1", "group": "Point variables(removed)", "definition": "25", "description": "", "templateType": "anything"}, "a1": {"name": "a1", "group": "Point variables(removed)", "definition": "30", "description": "", "templateType": "anything"}, "c4": {"name": "c4", "group": "intercept", "definition": "random(3..6)", "description": "", "templateType": "anything"}, "c3": {"name": "c3", "group": "intercept", "definition": "random(1..5)", "description": "", "templateType": "anything"}, "cfake": {"name": "cfake", "group": "intercept", "definition": "random(-8..-3)", "description": "", "templateType": "anything"}, "c5": {"name": "c5", "group": "intercept", "definition": "random(14..17)", "description": "", "templateType": "anything"}, "d1": {"name": "d1", "group": "Point variables(removed)", "definition": "60", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "intercept", "definition": "random(-10..-5)", "description": "", "templateType": "anything"}, "mfake": {"name": "mfake", "group": "Gradient", "definition": "random(-4..-1)", "description": "", "templateType": "anything"}, "c10": {"name": "c10", "group": "Point variables(removed)", "definition": "-30/m3", "description": "", "templateType": "anything"}, "c2": {"name": "c2", "group": "intercept", "definition": "random(15..20)", "description": "", "templateType": "anything"}, "m2": {"name": "m2", "group": "Gradient", "definition": "m1", "description": "", "templateType": "anything"}, "f1": {"name": "f1", "group": "Point variables(removed)", "definition": "-40", "description": "", "templateType": "anything"}, "m3": {"name": "m3", "group": "Gradient", "definition": "random(-2..-1#0.1)", "description": "", "templateType": "anything"}, "muniq": {"name": "muniq", "group": "Gradient", "definition": "random(10..50 except m1 m2 m3 mfake)", "description": "", "templateType": "anything"}, "cpar": {"name": "cpar", "group": "intercept", "definition": "random(500..750)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Gradient", "variables": ["m1", "m2", "m3", "mfake", "muniq"]}, {"name": "intercept", "variables": ["c1", "c2", "c3", "c4", "c5", "cfake", "cpar"]}, {"name": "Point variables(removed)", "variables": ["a1", "b1", "c10", "d1", "f1"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

A continuación complete los espacios para la descripción de las rectas paralelas.

\n

Las rectas paralelas se definen como rectas que permanecen [[0]] distancia  y nunca se encuentran. Esto significa que su [[1]] es la misma.

\n

Si escribimos las ecuaciones de la recta en la forma. $y=m_i\\cdot x_i+c_i$, entonces las rectas paralelas tienen: [[2]] $=$ [[3]].

\n

Las rectas verticales son siempre paralelas al [[4]] y las rectas horizontales son siempre paralelas  al [[5]].

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["A igual ", "

a una variable

", "

2 unidades de 

"], "matrix": ["1", 0, 0], "distractors": ["", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["pendiente", "

intersección en el eje $y$

", "

longitud

", "

color

", "

Intersección en el eje $x$

"], "matrix": ["1", 0, 0, 0, 0], "distractors": ["", "", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

m\u2081

", "

c\u2081

", "

x\u2081

", "

y\u2081

"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

m\u2082

", "

c\u2082

", "

x\u2082

", "

y\u2082

"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

al eje x

", "

al eje y

", "

y=x

", "ninguna"], "matrix": ["0", "1", 0, 0], "distractors": ["", "", "", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

al eje x

", "

al eje y

", "

y=x

", "ninguna"], "matrix": ["1", 0, 0, 0], "distractors": ["", "", "", ""]}], "sortAnswers": false}, {"type": "m_n_x", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Usa el gráfico de arriba para hacer coincidir la recta con su respectiva ecuación.

", "minMarks": 0, "maxMarks": 0, "minAnswers": 0, "maxAnswers": 0, "shuffleChoices": true, "shuffleAnswers": false, "displayType": "radiogroup", "warningType": "none", "showCellAnswerState": true, "choices": ["

$y=\\simplify{{m1}x+{c1}}$

", "

$y=\\simplify{{m2}x+{c2}}$

", "

$y=\\simplify{{m3}x+{c3}}$

", "

$y=\\var{c4}$

", "

$x=\\var{c5}$

", "

$y=\\simplify{{mfake}x+{cfake}}$

"], "matrix": [["1", 0, 0, 0, 0, 0], [0, "1", 0, 0, 0, 0], [0, 0, "1", 0, 0, 0], [0, 0, 0, "1", 0, 0], [0, 0, 0, 0, "1", 0], [0, 0, 0, 0, 0, "1"]], "layout": {"type": "all", "expression": ""}, "answers": ["

$A_0$

", "

$B_0$

", "

$C_0$

", "

$D_0$

", "

$E_0$

", "Ninguna de estas"]}, {"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

¿Qué rectas son paralelas a la recta con ecuación $y=\\var{cfake}$?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "choices": ["

$A_0$

", "

$B_0$

", "

$C_0$

", "

$D_0$

", "

$E_0$

", "

Ninguna de estas

"], "matrix": [0, 0, 0, "1", 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

¿Qué rectas son paralelas a la recta con ecuación $y=\\var{m1}x+\\var{cpar}$?

", "minMarks": "0", "maxMarks": "1", "shuffleChoices": false, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "choices": ["

$A_0$

", "

$B_0$

", "

$C_0$

", "

$D_0$

", "

$E_0$

", "

Ninguna de estas

"], "matrix": ["1/2", "1/2", 0, "0", 0, 0], "distractors": ["", "", "", "", "", ""]}, {"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

¿Qué rectas son paralelas al eje $x$ ?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "choices": ["

$A_0$

", "

$B_0$

", "

$C_0$

", "

$D_0$

", "

$E_0$

", "Ninguna de estas"], "matrix": ["0", "0", 0, "2", "0", 0], "distractors": ["", "", "", "", "", ""]}, {"type": "m_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

¿Qué rectas son paralelas a la recta con ecuación: $y=\\simplify{{muniq}x+{c1}}$?

", "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "checkbox", "displayColumns": 0, "minAnswers": 0, "maxAnswers": 0, "warningType": "none", "showCellAnswerState": true, "choices": ["

$A_0$

", "

$B_0$

", "

$C_0$

", "

$D_0$

", "

$E_0$

", "Ninguna de estas"], "matrix": ["0", "0", 0, "0", "0", "1"], "distractors": ["", "", "", "", "", ""]}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Complete la ecuación general de la recta en la forma $y=mx+c$,  para cualquier recta paralela a la recta $C_0$.

\n

$y=$[[0]]$x+c$

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{m3}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Bradley Bush", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1521/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}