// Numbas version: finer_feedback_settings {"name": "Determinar el centro y radio de una circunferencia completando cuadrados", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Determinar el centro y radio de una circunferencia completando cuadrados", "tags": [], "metadata": {"description": "
Completa el cuadrado dos veces para determinar el radio y el centro de un círculo.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "$\\simplify[basic,basic,fractionNumbers]{{scoeff}x^2+{lcoeff}x+{scoeff}y^2+{m}y+{k}}$ | \n$=$ | \n$\\var{c}$ | \n\n |
$\\simplify[basic,basic,fractionNumbers]{{scoeff}x^2+{lcoeff}x+{scoeff}y^2+{m}y}$ | \n$=$ | \n$\\simplify[basic,fractionNumbers]{{c-k}}$ | \n(obtener todas las constantes en el lado derecho) | \n
$\\simplify[basic,fractionNumbers]{x^2+{lcoeff}/{scoeff}x}+\\simplify[basic,fractionNumbers]{y^2+{m}/{scoeff}y}$ | \n$=$ | \n$\\simplify[basic,fractionNumbers]{{(c-k)/scoeff}}$ | \n\n \n \n\n \n\n \n\n \n\n\n \n \n | \n
$\\simplify[basic,fractionNumbers]{x^2+{lcoeff/scoeff}x+{lcoeff^2/(4*scoeff^2)}}+\\simplify[basic,fractionNumbers]{y^2+{m/scoeff}y+{m^2/(4*scoeff^2)}}$ | \n$=$ | \n$\\simplify[basic,fractionNumbers]{{(c-k)/scoeff}}+\\simplify{{lcoeff^2}/{4*scoeff^2}}+\\simplify{{m^2}/{4*scoeff^2}}$ | \n\n (para $ x $ y $ y $: agregue a ambos lados el cuadrado de la mitad del coeficiente) \n | \n
$(\\simplify[basic,fractionNumbers]{x+{-xcentre}})^2+(\\simplify[basic,fractionNumbers]{y+{-ycentre}})^2$ | \n$=$ | \n$\\simplify[basic,fractionNumbers]{{radius^2}}$ | \n(reescribe el lado izquierdo como dos cuadrados perfectos) | \n
$(\\simplify[basic,fractionNumbers]{x+{-xcentre}})^2+(\\simplify[basic,fractionNumbers]{y+{-ycentre}})^2$ | \n$=$ | \n$\\left(\\simplify[basic,fractionNumbers]{{radius}}\\right)^2$ | \n\n |
De esta ecuación podemos concluir que la ecuación es de un círculo de radio $\\simplify[basic,fractionNumbers]{{radius}}$ with centre $\\left(\\simplify[basic,fractionNumbers]{{xcentre}},\\simplify[basic,fractionNumbers]{{ycentre}}\\right)$.
coeff of y
", "templateType": "anything"}, "sqrtargbot": {"name": "sqrtargbot", "group": "Ungrouped variables", "definition": "sqrt(argbot)", "description": "", "templateType": "anything"}, "lengthdet": {"name": "lengthdet", "group": "Ungrouped variables", "definition": "abs(a*d-b*c)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "radius": {"name": "radius", "group": "Ungrouped variables", "definition": "if(switch=0,abs((a*d-b*c)/(2a*b)),abs((a*d+b*c)/(2a*b)))", "description": "", "templateType": "anything"}, "ycentre": {"name": "ycentre", "group": "Ungrouped variables", "definition": "-m/(2*scoeff)", "description": "", "templateType": "anything"}, "div": {"name": "div", "group": "Ungrouped variables", "definition": "lcoeff/scoeff", "description": "", "templateType": "anything"}, "dd": {"name": "dd", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "xcentre": {"name": "xcentre", "group": "Ungrouped variables", "definition": "-lcoeff/(2*scoeff)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything"}, "lcoeff": {"name": "lcoeff", "group": "Ungrouped variables", "definition": "a*d+b*c", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "if(c*b=a*dd,dd+1,dd)", "description": "", "templateType": "anything"}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "(lcoeff^2-4*scoeff*ccoeff)", "description": "", "templateType": "anything"}, "scoeff": {"name": "scoeff", "group": "Ungrouped variables", "definition": "a*b", "description": "", "templateType": "anything"}, "switch": {"name": "switch", "group": "Ungrouped variables", "definition": "random(0,0,0,1)", "description": "if 0 then small radius if 1 then larger (on average)
", "templateType": "anything"}, "ccoeff": {"name": "ccoeff", "group": "Ungrouped variables", "definition": "c*d", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "dd", "d", "scoeff", "lcoeff", "ccoeff", "disc", "lengthdet", "div", "argtop", "argbot", "sqrtargtop", "sqrtargbot", "m", "k", "xcentre", "ycentre", "radius", "switch"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "La ecuación representa una circunferencia círculo con radio. [[0]] y centro en el punto $\\large($ [[1]], [[2]] $\\large)$.
", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Escriba la ecuación del círculo en forma estándar, $(x-a)^2 + (y-b)^2 = r^2$, completando el cuadrado para los términos $ x $ y también para los términos $y$. Una vez hecho esto, debe reconocer la ecuación de un círculo de radio $r$ con el centro $(a,b)$.
\n\n"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{radius}", "maxValue": "{radius}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{xcentre}", "maxValue": "{xcentre}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{ycentre}", "maxValue": "{ycentre}", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}