// Numbas version: finer_feedback_settings {"name": "CLE11. True false", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "CLE11. True false", "rulesets": {}, "ungrouped_variables": [], "extensions": [], "variable_groups": [{"variables": ["statements_true", "statements_false", "max_mark", "n", "a", "b", "c"], "name": "change these"}, {"variables": ["rand", "statements", "marks"], "name": "do not change these"}], "parts": [{"maxMarks": "0", "unitTests": [], "layout": {"expression": "", "type": "all"}, "customName": "", "matrix": "{marks}", "prompt": "
Which of the following are true and which are false? If you are unsure of something, find out the answer instead of guessing. A single error will result in a score 0 for the whole question. If you are unable to find out or understand the answer, you are welcome to ask me for help or advice.
\n\nIn the following, $f(x) = \\sin(x)$ and $g(t) = \\cos(t)$.
", "choices": "{statements}", "marks": 0, "minMarks": 0, "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "answers": ["True
", "False
"], "useCustomName": false, "warningType": "none", "scripts": {}, "type": "m_n_x", "shuffleAnswers": false, "maxAnswers": 0, "showCorrectAnswer": true, "shuffleChoices": true, "showFeedbackIcon": true, "showCellAnswerState": true, "minAnswers": "{n}", "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "displayType": "radiogroup"}], "variables": {"a": {"name": "a", "description": "", "definition": "random(3..7)", "templateType": "anything", "group": "change these"}, "marks": {"name": "marks", "description": "", "definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark/3+max_mark/n],[-max_mark/3+max_mark/n,max_mark/n]),j,0..n-1))\n", "templateType": "anything", "group": "do not change these"}, "c": {"name": "c", "description": "", "definition": "random(6..9)", "templateType": "anything", "group": "change these"}, "b": {"name": "b", "description": "", "definition": "random(10..18)+random(1..9)/10", "templateType": "anything", "group": "change these"}, "rand": {"name": "rand", "description": "", "definition": "repeat(if(random(0..3)=3,1,0),n)", "templateType": "anything", "group": "do not change these"}, "statements_true": {"name": "statements_true", "description": "", "definition": "[\"$\\\\frac{dg}{dt}$ is not the same as $\\\\frac{dg}{dx}$ \",\n \"When adding up an arithmetic series using the reasoning from lectures, you re-write the sum underneath but in reverse\",\n \"$f'(\\\\pi/2)=0$\",\n \"$g'(\\\\pi/2)=-1$\",\n \"$f(\\\\pi/2)=1$\",\n \"$g(\\\\pi/2)=0$\",\n \"The second derivative of $f$ can be denoted by $\\\\frac{d^2f}{dx^2}$\",\n \"$f(x+\\\\delta x) \\\\approx f(x) + f'(x) \\\\delta x$\",\n \"$v = \\\\frac{dx}{dt}$. ($v$ represents velocity and $x$ represents position.)\",\n \"When using the second derivative test, if you get zero, the test is inconclusive\",\n \"When using the second derivative test, if you get $-1$, we have a maximum point\",\n \"There are three kinds of stationary point: maximum, minimum and inflection points\",\n \"When differentiating $\\\\frac{1}{\\\\sin(x)}$, you re-write it as $(\\\\sin(x))^{-1}$\",\n \"When finding stationary points of a function $h(x)$, you need to solve the equation $h'(x)=0$\"\n]\n ", "templateType": "anything", "group": "change these"}, "statements_false": {"name": "statements_false", "description": "", "definition": "[\"$\\\\frac{dg}{dt}=-\\\\sin(x)$\",\n \"When adding up an arithmetic series using the reasoning from lectures, you obtain lots of cancellation when you do the subtraction step\",\n \"$f'(\\\\pi/2)=1$\",\n \"$g'(\\\\pi/2)=0$\",\n \"$f(\\\\pi/2)=0$\",\n \"$g(\\\\pi/2)=-1$\",\n \"The second derivative of $f$ can be denoted by $\\\\frac{d^2f}{d^2x}$\",\n \"$f(x+\\\\delta x) = f(x) + f'(x) \\\\delta x$\",\n \"$v = \\\\frac{dt}{dx}$. ($v$ represents velocity and $x$ represents position.)\",\n \"When using the second derivative test, if you get zero, we have an inflection point\",\n \"When using the second derivative test, if you get $-1$, we have a minimum point\",\n \"There are two kinds of stationary point: maximum and minimum points\",\n \"The derivative of $\\\\frac{1}{\\\\sin(x)}$ is $\\\\frac{1}{\\\\cos(x)}$\",\n \"When finding stationary points of a function $h(x)$, you need to solve the equation $h(x)=0$\"\n]", "templateType": "anything", "group": "change these"}, "statements": {"name": "statements", "description": "", "definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)", "templateType": "anything", "group": "do not change these"}, "max_mark": {"name": "max_mark", "description": "", "definition": "10", "templateType": "anything", "group": "change these"}, "n": {"name": "n", "description": "", "definition": "length(statements_true)", "templateType": "anything", "group": "change these"}}, "metadata": {"description": "15 questions based on module so far.
", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"js": "", "css": ""}, "functions": {}, "tags": [], "advice": "See all the lectures and workshops up to this point.
", "statement": "", "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}