// Numbas version: finer_feedback_settings {"name": "Alison's copy of Matrices: cofactors determinant and inverse of a 3x3 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "tags": [], "variables": {"a11": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a11"}, "cof32": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a13*a21-a11*a23", "name": "cof32"}, "cof33": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a11*a22-a12*a21", "name": "cof33"}, "a31": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a31"}, "a22": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100 except(a21*a12/a11))/10", "name": "a22"}, "cof12": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a23*a31-a21*a33", "name": "cof12"}, "cof22": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a11*a33-a31*a13", "name": "cof22"}, "cof13": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a21*a32-a31*a22", "name": "cof13"}, "matrixA": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "name": "matrixA"}, "cof23": {"templateType": "anything", "description": "
cof23
", "group": "cofactors", "definition": "a12*a31-a11*a32", "name": "cof23"}, "cof11": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a22*a33-a32*a23", "name": "cof11"}, "inverseA": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "matrix([cof11,cof21,cof31],[cof12,cof22,cof32],[cof13,cof23,cof33])/det(matrixA)", "name": "inverseA"}, "cof21": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a32*a13-a12*a33", "name": "cof21"}, "cof31": {"templateType": "anything", "description": "", "group": "cofactors", "definition": "a12*a23-a22*a13", "name": "cof31"}, "a13": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a13"}, "a12": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a12"}, "a21": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a21"}, "a33": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a33"}, "a32": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a32"}, "a23": {"templateType": "anything", "description": "", "group": "Ungrouped variables", "definition": "random(0..100)/10", "name": "a23"}}, "name": "Alison's copy of Matrices: cofactors determinant and inverse of a 3x3 matrix", "advice": "If \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e&f\\\\ g&h&j \\end{array} \\right),\\]
Cofactors are given by \\[ A=\\left( \\begin{array}{ccc}
a & b & c \\\\d & e&f\\\\ g&h&j \\end{array} \\right),\\]
Cof11 =\\[ +\\left| \\begin{array}{ccc}
e&f\\\\ h&j \\end{array} \\right|,\\]
Cof12 =\\[ -\\left| \\begin{array}{ccc}
d & f\\\\ g&j \\end{array} \\right|,\\]
Cof13 =\\[ +\\left| \\begin{array}{ccc}
d & e\\ g&h\\end{array} \\right|,\\]
Cof21 =\\[ -\\left| \\begin{array}{ccc}
b & c \\\\h&j \\end{array} \\right|,\\]
Cof22 =\\[ +\\left| \\begin{array}{ccc}
a & c \\\\ g&j \\end{array} \\right|,\\]
Cof23 =\\[ -\\left| \\begin{array}{ccc}
a & b \\\\g&h\\end{array} \\right|,\\]
Cof31 =\\[ +=\\left| \\begin{array}{ccc}
b & c \\\\e&f\\end{array} \\right|,\\]
Cof32 =\\[ -\\left| \\begin{array}{ccc}
a & c \\\\d & f\\end{array} \\right|,\\]
Cof33 =\\[ +\\left| \\begin{array}{ccc}
a & b\\\\d & e \\end{array} \\right|,\\]
Then, the determinant of A is given by the sum of the product of any row ( or column) elements by their cofactors
\ne.g row 1 determinant = a*cof11+b*cof12+c*cof13
\nand the inverse of A is given by the ratio of the adjoint(A) and the deteminant of A
\nwhere adjoint A= \\left( \\begin{array}{ccc}
cof11 & cof21 & cof31 \\\\cof12 & cof22&cof32\\\\ cof13&cof23&cof33 \\end{array} \\right),\\]
inverse of A=\\[ \\frac{1}{det(A)}*\\left( \\begin{array}{ccc}
cof11 & cof21 & cof31 \\\\cof12 & cof22&cof32\\\\ cof13&cof23&cof33 \\end{array} \\right),\\]
\n", "statement": "", "variable_groups": [{"variables": ["cof11", "cof12", "cof13", "cof21", "cof22", "cof23", "cof31", "cof32", "cof33"], "name": "cofactors"}, {"variables": [], "name": "Unnamed group"}], "metadata": {"description": "
Cofactors Determinant and inverse of a 3x3 matrix.
", "licence": "Creative Commons Attribution 4.0 International"}, "parts": [{"gaps": [{"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof11}", "maxValue": "{cof11}", "scripts": {}, "variableReplacements": [], "allowFractions": true, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof12}", "maxValue": "{cof12}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof13}", "maxValue": "{cof13}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof21}", "maxValue": "{cof21}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof22}", "maxValue": "{cof22}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof23}", "maxValue": "{cof23}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof31}", "maxValue": "{cof31}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof32}", "maxValue": "{cof32}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}, {"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "{cof33}", "maxValue": "{cof33}", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "type": "gapfill", "marks": 0, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "prompt": "\ncalculate the nine cofactors of A=$\\var{matrixA}$?
\ncofactor in position 1,1[[0]]
\ncofactor in position 1,2[[1]]
\ncofactor in position 1,3[[2]]
\ncofactor in position 2,1[[3]]
\ncofactor in position 2,2[[4]]
\ncofactor in position 2,3[[5]]
\ncofactor in position 3,1[[6]]
\ncofactor in position 3,2[[7]]
\ncofactor in position 3,3[[8]]
"}, {"gaps": [{"showCorrectAnswer": true, "correctAnswerFraction": false, "marks": 1, "minValue": "det(matrixA)", "maxValue": "det(matrixA)", "scripts": {}, "variableReplacements": [], "allowFractions": false, "type": "numberentry", "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "type": "gapfill", "marks": 0, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "prompt": "What is the determinant of A=$\\var{matrixA}$?
\n[[0]]
"}, {"gaps": [{"showCorrectAnswer": true, "marks": 1, "scripts": {}, "variableReplacements": [], "type": "matrix", "markPerCell": false, "allowFractions": false, "correctAnswerFractions": false, "allowResize": true, "numRows": "3", "numColumns": "3", "correctAnswer": "inverseA", "tolerance": "0.005", "variableReplacementStrategy": "originalfirst"}], "showCorrectAnswer": true, "type": "gapfill", "marks": 0, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "prompt": "\nWhat is the inverse of A=$\\var{matrixA}$?
\n[[0]]
"}], "ungrouped_variables": ["matrixA", "a11", "a12", "a21", "a22", "a13", "a23", "a31", "a32", "a33", "inverseA"], "preamble": {"js": "", "css": ""}, "functions": {}, "extensions": [], "rulesets": {}, "type": "question", "contributors": [{"name": "bryan pearce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/347/"}, {"name": "Alison Loddick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2871/"}]}]}], "contributors": [{"name": "bryan pearce", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/347/"}, {"name": "Alison Loddick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2871/"}]}