// Numbas version: finer_feedback_settings {"name": "Derivada aplicando la regla del cociente", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Derivada aplicando la regla del cociente", "tags": [], "metadata": {"description": "
Derivar la siguiente función $ f (x) $ usando la regla del cociente.
", "advice": "La regla del cociente dice que si $ u $ y $ v $ son funciones de $x$, entonces
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]
Para este ejemplo:
\n\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]
\n\\[\\simplify[std]{v = ({c} * x+{d})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {c}}\\]
\nPor lo tanto, al sustituir en la regla del cociente anterior obtenemos:
\n\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x+{d})-{c}({a}x+{b}))/({c}x+{d})^2}\\\\ &=&\\simplify[std]{({a*c}x+{a*d}-{c*a}x-{c*b})/({c}x+{d})^2}\\\\ &=&\\simplify[std]{{det}/({c}x+{d})^2} \\end{eqnarray*}\\]
", "rulesets": {"surdf": [{"result": "(sqrt(b)*a)/b", "pattern": "a/sqrt(b)"}], "std": ["all", "!collectNumbers", "fractionNumbers"]}, "extensions": [], "variables": {"b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "if(a*d=b*c1,c1+1,c1)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "det": {"name": "det", "group": "Ungrouped variables", "definition": "a*d-b*c", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "s2", "s1", "det", "c1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "\n\t\t\t\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}*x+{d})}\\]
\n\t\t\t$\\displaystyle \\frac{df}{dx}=\\;$[[0]]
\n\t\t\t", "stepsPenalty": 1, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "La regla del cociente dice que si $u$ y $v$ son funciones de $x$, entonces
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]