// Numbas version: finer_feedback_settings {"name": "Derivar una funci\u00f3n lineal sobre una funci\u00f3n cuadr\u00e1tica", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Numbas_Question_Authoring_Cheat_Sheet.pdf", "/srv/numbas/media/question-resources/Numbas_Question_Authoring_Cheat_Sheet.pdf"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Derivar una funci\u00f3n lineal sobre una funci\u00f3n cuadr\u00e1tica", "tags": [], "metadata": {"description": "

La derivada de $\\displaystyle\\frac{ax+b}{cx^2+dx+f}$ es $\\displaystyle \\frac{g(x)}{(cx^2+dx+f)^2}$. Encontrar $g(x)$.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Derivar la siguiente función $ f (x) $ usando la regla del cociente.

", "advice": "

La regla del cociente dice que si $u$ y $v$ son funciones de $x$, entonces
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

\n

Para este ejemplo:

\n

\\[\\simplify[std]{u = ({a}x+{b})}\\Rightarrow \\simplify[std]{Diff(u,x,1) = {a}}\\]

\n

\\[\\simplify[std]{v = ({c} * x^2+{d}x+{f})} \\Rightarrow \\simplify[std]{Diff(v,x,1) = {2*c}x+{d}}\\]

\n

Por lo tanto, al sustituir en la regla del cociente anterior obtenemos:

\n

\\[\\begin{eqnarray*} \\frac{df}{dx}&=&\\simplify[std]{({a}({c}x^2+{d}x+{f})-({2*c}x+{d})({a}x+{b}))/({c}x^2+{d}x+{f})^2}\\\\ &=&\\simplify[std]{({a*c}x^2+{a*d}x+{a*f}-{2*c*a}x^2-{a*d+2*c*b}x-{d*b})/({c}x^2+{d}x+{f})^2}\\\\ &=&\\simplify[std]{({-c*a}x^2+{-2*b*c}x+{a*f-d*b})/({c}x^2+{d}x+{f})^2} \\end{eqnarray*}\\]
Por lo tanto $g(x)=\\simplify[std]{{-c*a}x^2+{-2*b*c}x+{a*f-d*b}}$

\n

\n

", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "variables": {"c": {"name": "c", "group": "Ungrouped variables", "definition": "if(a*d=b*c1,c1+1,c1)", "description": "", "templateType": "anything"}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "s2*random(1..9)", "description": "", "templateType": "anything"}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(1..8)", "description": "", "templateType": "anything"}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "s1*random(1..9)", "description": "", "templateType": "anything"}, "s2": {"name": "s2", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "s1": {"name": "s1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything"}, "det": {"name": "det", "group": "Ungrouped variables", "definition": "a*f-b*d", "description": "", "templateType": "anything"}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(2..9)", "description": "", "templateType": "anything"}, "f": {"name": "f", "group": "Ungrouped variables", "definition": "random(-9..9)", "description": "", "templateType": "anything"}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "c", "b", "d", "f", "s2", "s1", "det", "c1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d}x+{f})}\\]
Se da la relación  \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d}x+{f})^2}\\]
para el polinomio $g(x)$.  Se pide que encuentre $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Ingrese números como fracciones o enteros y no como decimales.

\n

Haga clic en Mostrar pasos para obtener más información. 

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{-c*a}x^2+{-2*b*c}x+{a*f-b*d}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input numbers as fractions or integers and not as decimals.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

\\[\\simplify[std]{f(x) = ({a} * x+{b})/({c}x^2+{d}x+{f})}\\]
Se da la relación  \\[\\frac{df}{dx}=\\simplify[std]{g(x)/({c}x^2+{d}x+{f})^2}\\]
para el polinomio $g(x)$.  Se pide que encuentre $g(x)$

\n

$g(x)=\\;$[[0]]

\n

Ingrese números como fracciones o enteros y no como decimales.

\n

Haga clic en Mostrar pasos para obtener más información. 

", "stepsPenalty": 0, "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "prompt": "

The quotient rule says that if $u$ and $v$ are functions of $x$ then
\\[\\simplify[std]{Diff(u/v,x,1) = (v * Diff(u,x,1) - u * Diff(v,x,1))/v^2}\\]

"}], "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 3, "showCorrectAnswer": true, "showFeedbackIcon": true, "scripts": {}, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "adaptiveMarkingPenalty": 0, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "answer": "{-c*a}x^2+{-2*b*c}x+{a*f-b*d}", "answerSimplification": "std", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "notallowed": {"strings": ["."], "showStrings": false, "partialCredit": 0, "message": "

Input numbers as fractions or integers and not as decimals.

"}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "type": "question", "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Luis Hernandez", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2870/"}]}