// Numbas version: exam_results_page_options {"name": "Strong Induction", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"ungrouped_variables": ["A", "B", "root1", "root2", "k"], "advice": "

Proof by induction always has a base case and inductive step. In part a we are asked to show

\n

$f(0) = \\var{A}\\times\\var{root1}^0 + \\var{B}\\times\\var{root2}^0 = \\var{A + B} = u_0$,

\n

$f(1) = \\var{A}\\times\\var{root1}^1 + \\var{B}\\times\\var{root2}^1 = \\var{root1*A + root2*B} = u_1.$

\n

In part b we fix $n$ and assume that $f(k) = u_k$ for $2 \\leq k \\leq n$. That is, assume

\n

$ u_k =  \\var{A}\\times\\var{root1}^k + \\var{B}\\times\\var{root2}^k. $

\n

In strong induction you usually assume all of the previous cases hold ($f(k)=u_k$ is true for all $2\\leq k\\leq n$). This works generally, but here we end up using only the assumptions that $u_n = f(n)$ and $u_{n-1}=f(n-1)$.

\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
$ u_{n+1}$$ = \\var{root1 + root2} u_{n} - \\var{root1*root2}u_{n-1} $ 
$ = \\var{root1 + root2} (\\var{A}\\times\\var{root1}^n + \\var{B}\\times\\var{root2}^n) - \\var{root1*root2}(\\var{A}\\times\\var{root1}^{n-1} + \\var{B}\\times\\var{root2}^{n-1}) $
$= (\\var{root1 + root2}\\times\\var{A}\\times\\var{root1} - \\var{root1*root2}\\times\\var{A})\\var{root1}^{n-1} + (\\var{root1 + root2}\\times\\var{B}\\times\\var{root2} - \\var{root1*root2}\\times\\var{B})\\var{root2}^{n-1} $
\n

$ = \\simplify{({root1}+{root2})*{A}*{root1} - {root1}*{root2}*{A}}\\times\\var{root1}^{n-1} + \\simplify{({root1}+{root2})*{B}*{root2} - {root1}*{root2}*{B}}\\times\\var{root2}^{n-1} $

\n
\n

$= \\simplify{(({root1}+{root2})*{A}*{root1} - {root1}*{root2}*{A})/{root1}^2}\\times\\var{root1}^{n+1} + \\simplify{(({root1}+{root2})*{B}*{root2} - {root1}*{root2}*{B})/{root2}^2}\\times\\var{root2}^{n+1}$

\n
\n

Hence $f(n) = u_n$ for all $n = 0,1,\\cdots$ by induction.

", "variable_groups": [], "tags": [], "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "rulesets": {}, "variables": {"root1": {"definition": "random(2..9)", "group": "Ungrouped variables", "name": "root1", "templateType": "anything", "description": ""}, "root2": {"definition": "random(2..6 except root1)", "group": "Ungrouped variables", "name": "root2", "templateType": "anything", "description": ""}, "A": {"definition": "random(-5..6 except [-1,0,1])", "group": "Ungrouped variables", "name": "A", "templateType": "anything", "description": ""}, "B": {"definition": "random(2..7 except [A])", "group": "Ungrouped variables", "name": "B", "templateType": "anything", "description": ""}, "k": {"definition": "random(10..20)", "group": "Ungrouped variables", "name": "k", "templateType": "anything", "description": ""}}, "statement": "

Strong induction is the name given to induction that makes more assumptions in the inductive step. Consider the sequence of numbers $u_0, u_1, u_2, \\cdots$ defined by

\n

$\\begin{align*} u_0 & = \\var{A+B} \\\\ u_1 & = \\var{A*root1 + B*root2} \\\\ u_n & = \\var{root1 + root2} u_{n-1} - \\var{root1*root2}u_{n-2} \\text{ for } n \\geq 2. \\end{align*}$

\n

Prove by strong induction that $f(n) = \\simplify{{A}*{root1}^n + {B}*{root2}^n} = u_n$.

", "extensions": [], "preamble": {"js": "", "css": ""}, "name": "Strong Induction", "parts": [{"unitTests": [], "sortAnswers": false, "prompt": "

Since the general term is defined by the two terms preceding it, the first two terms $u_0$ and $u_1$ are both base cases.

\n

Prove the base cases:

\n

$f(0) = \\var{A}\\times\\var{root1}^0 + \\var{B}\\times\\var{root2}^0 = $ [[0]]

\n

$f(1) = \\var{A}\\times\\var{root1}^1 + \\var{B}\\times\\var{root2}^1 = $ [[1]].

", "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "customName": "", "gaps": [{"unitTests": [], "maxValue": "{A + B}", "allowFractions": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "0.5", "customMarkingAlgorithm": "", "scripts": {}, "minValue": "{A + B}", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "mustBeReduced": false, "type": "numberentry", "extendBaseMarkingAlgorithm": true, "customName": "", "showFractionHint": true, "useCustomName": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0}, {"unitTests": [], "maxValue": "{root1*A + root2*B}", "allowFractions": false, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": "0.5", "customMarkingAlgorithm": "", "scripts": {}, "minValue": "{root1*A + root2*B}", "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "mustBeReduced": false, "type": "numberentry", "extendBaseMarkingAlgorithm": true, "customName": "", "showFractionHint": true, "useCustomName": false, "correctAnswerStyle": "plain", "correctAnswerFraction": false, "variableReplacementStrategy": "originalfirst", "mustBeReducedPC": 0}], "useCustomName": false, "variableReplacementStrategy": "originalfirst"}, {"unitTests": [], "sortAnswers": false, "prompt": "

Induction step: Assume for each integer $2 \\leq k \\leq n$ that:

\n

$u_k = $ [[0]]

\n

Using the assumptions that you just made, show that $f(n+1)=u_{n+1}$. That is:

\n

$u_{n+1} =\\var{root1 + root2} u_{n} - \\var{root1*root2}u_{n-1} = $ [[1]].

\n

\n

", "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "customName": "", "gaps": [{"unitTests": [], "answer": "{A}*{root1}^k + {B}*{root2}^k", "failureRate": 1, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 1, "customMarkingAlgorithm": "", "scripts": {}, "vsetRangePoints": 5, "checkVariableNames": true, "variableReplacements": [], "checkingAccuracy": 0.001, "type": "jme", "extendBaseMarkingAlgorithm": true, "valuegenerators": [{"value": "", "name": "k"}], "customName": "", "showPreview": true, "useCustomName": false, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1]}, {"unitTests": [], "answer": "{A}*{root1}^(n+1) + {B}*{root2}^(n+1)", "failureRate": 1, "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 1, "customMarkingAlgorithm": "", "scripts": {}, "vsetRangePoints": 5, "checkVariableNames": true, "variableReplacements": [], "checkingAccuracy": 0.001, "type": "jme", "extendBaseMarkingAlgorithm": true, "valuegenerators": [{"value": "", "name": "n"}], "customName": "", "showPreview": true, "useCustomName": false, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1]}], "useCustomName": false, "variableReplacementStrategy": "originalfirst"}, {"unitTests": [], "prompt": "

The base case gives that $u_0=f(0)$ and $u_1=f(1)$. The first iteration of the induction step uses these assumptions to prove $u_2 = f(2)$. A second iteration uses proves that $f(3) = u_3$ and so on. Hence $f(n)=u_n$ for evey integer $n \\geq 0$.

", "showFeedbackIcon": true, "showCorrectAnswer": true, "marks": 0, "customMarkingAlgorithm": "", "scripts": {}, "variableReplacements": [], "type": "information", "extendBaseMarkingAlgorithm": true, "customName": "", "useCustomName": false, "variableReplacementStrategy": "originalfirst"}], "metadata": {"licence": "Creative Commons Attribution-ShareAlike 4.0 International", "description": "

Intorduces strong induction and uses it to verify the solutions of a second order linear recurrence.

"}, "contributors": [{"name": "Daniel Mansfield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/743/"}, {"name": "Sean Gardiner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2443/"}]}]}], "contributors": [{"name": "Daniel Mansfield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/743/"}, {"name": "Sean Gardiner", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2443/"}]}