// Numbas version: finer_feedback_settings {"name": "Laplace: Find the Laplace transfrom of ode", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "variables": {"c": {"definition": "random(3..12#1)", "group": "Ungrouped variables", "description": "", "name": "c", "templateType": "randrange"}, "a": {"definition": "random(2..10#1)", "group": "Ungrouped variables", "description": "", "name": "a", "templateType": "randrange"}, "g": {"definition": "random(3..9#1)", "group": "Ungrouped variables", "description": "", "name": "g", "templateType": "randrange"}, "b": {"definition": "random(10..25#1)", "group": "Ungrouped variables", "description": "", "name": "b", "templateType": "randrange"}, "f": {"definition": "random(1..6#1)", "group": "Ungrouped variables", "description": "", "name": "f", "templateType": "randrange"}, "d": {"definition": "random(3..8#1)", "group": "Ungrouped variables", "description": "", "name": "d", "templateType": "randrange"}}, "extensions": [], "rulesets": {}, "variable_groups": [], "advice": "

\\(\\frac{d^2q}{dt^2}+\\var{a}\\frac{dq}{dt}+\\var{b}q(t)=\\var{c}e^{-\\var{d}t}\\)    where   \\(q(0)=\\var{f}\\) and  \\(q'(0)=\\var{g}\\)

\n

\n

\\(s^2Q(s)-sq(0)-q'(0)+\\var{a}(s(Q(s)-q(0))+\\var{b}Q(s)=\\frac{\\var{c}}{s+\\var{d}}\\)

\n

\n

\\(s^2Q(s)-\\var{f}s-\\var{g}+\\var{a}sQ(s)-\\var{a}*\\var{f}+\\var{b}Q(s)=\\frac{\\var{c}}{s+\\var{d}}\\)

\n

\n

\\(s^2Q(s)+\\var{a}sQ(s)+\\var{b}Q(s)=\\frac{\\var{c}}{s+\\var{d}}+\\var{f}s+\\simplify{{g}+{a}*{f}}\\)

\n

\n

\\((s^2+\\var{a}s+\\var{b})Q(s)=\\frac{\\var{c}+(\\var{f}s+\\simplify{{g}+{a}*{f}})(s+\\var{d})}{s+\\var{d}}\\)

\n

\n

\\(Q(s)=\\frac{\\simplify{{f}s^2+({a}*{f}+{g}+{d}*{f})s+(({g}+{f}*{a})*{d}+{c})}}{(s+\\var{d})(s^2+\\var{a}s+\\var{b})}\\)

", "variablesTest": {"condition": "", "maxRuns": 100}, "functions": {}, "parts": [{"marks": 0, "type": "gapfill", "prompt": "

\\(Q(s)=\\) [[0]]

", "variableReplacementStrategy": "originalfirst", "gaps": [{"marks": "3", "variableReplacementStrategy": "originalfirst", "expectedvariablenames": [], "showFeedbackIcon": true, "showCorrectAnswer": true, "scripts": {}, "showpreview": true, "vsetrange": [0, 1], "answer": "({f}s^2+({f}*{a}+{g}+{d}*{f})s+(({g}+{a}*{f})*{d}+{c}))/((s+{d})(s^2+{a}s}+{b}))", "type": "jme", "vsetrangepoints": 5, "checkingaccuracy": 0.001, "checkvariablenames": false, "checkingtype": "absdiff", "variableReplacements": []}], "showFeedbackIcon": true, "showCorrectAnswer": true, "scripts": {}, "variableReplacements": []}], "statement": "

Find the Laplace transform of the following differential equation and express it \\(Q(s)\\) as a single fraction:

\n

\\(\\frac{d^2q}{dt^2}+\\var{a}\\frac{dq}{dt}+\\var{b}q(t)=\\var{c}e^{-\\var{d}t}\\)    where   \\(q(0)=\\var{f}\\) and  \\(q'(0)=\\var{g}\\)

", "ungrouped_variables": ["a", "b", "c", "d", "f", "g"], "tags": [], "name": "Laplace: Find the Laplace transfrom of ode", "metadata": {"description": "", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "type": "question", "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}], "resources": []}]}], "contributors": [{"name": "Clare Lundon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/492/"}, {"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}]}