// Numbas version: finer_feedback_settings {"name": "CLE12. True false", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": [], "parts": [{"maxAnswers": 0, "extendBaseMarkingAlgorithm": true, "shuffleChoices": true, "minMarks": 0, "type": "m_n_x", "prompt": "

Which of the following are true and which are false? If you are unsure of something, find out the answer instead of guessing. A single error will result in a score 0 for the whole question. If you are unable to find out or understand the answer, you are welcome to ask me for help or advice.

\n

\n

In the following, $f(x) = \\sin(x)$ and $g(t) = \\cos(t)$.

", "marks": 0, "maxMarks": "0", "choices": "{statements}", "displayType": "radiogroup", "customMarkingAlgorithm": "", "scripts": {}, "warningType": "none", "answers": ["

True

", "

False

"], "showCorrectAnswer": true, "showCellAnswerState": true, "showFeedbackIcon": true, "variableReplacements": [], "shuffleAnswers": false, "matrix": "{marks}", "variableReplacementStrategy": "originalfirst", "layout": {"type": "all", "expression": ""}, "minAnswers": "{n}", "unitTests": []}], "preamble": {"js": "", "css": ""}, "functions": {}, "advice": "

See all the lectures and workshops up to this point.

", "metadata": {"description": "

15 questions based on module so far. 

", "licence": "Creative Commons Attribution 4.0 International"}, "extensions": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "", "rulesets": {}, "name": "CLE12. True false", "ungrouped_variables": [], "variables": {"b": {"name": "b", "description": "", "templateType": "anything", "group": "change these", "definition": "random(10..18)+random(1..9)/10"}, "marks": {"name": "marks", "description": "", "templateType": "anything", "group": "do not change these", "definition": "matrix(map(if(rand[j]=1,[max_mark/n,-max_mark],[-max_mark,max_mark/n]),j,0..n-1))\n"}, "rand": {"name": "rand", "description": "", "templateType": "anything", "group": "do not change these", "definition": "repeat(if(random(0..3)=3,1,0),n)"}, "statements": {"name": "statements", "description": "", "templateType": "anything", "group": "do not change these", "definition": "map(if(rand[j]=1,\n statements_true[j],\n statements_false[j]),j,0..n-1)"}, "c": {"name": "c", "description": "", "templateType": "anything", "group": "change these", "definition": "random(6..9)"}, "a": {"name": "a", "description": "", "templateType": "anything", "group": "change these", "definition": "random(3..7)"}, "max_mark": {"name": "max_mark", "description": "", "templateType": "anything", "group": "change these", "definition": "10"}, "statements_false": {"name": "statements_false", "description": "", "templateType": "anything", "group": "change these", "definition": "[\"$\\\\displaystyle \\\\int f(x) = -\\\\cos(x)+c$\",\n \"$\\\\displaystyle \\\\int \\\\sin(x) \\\\, dx = -\\\\cos(x)$\",\n \"$\\\\displaystyle \\\\int f(x) \\\\, dx = \\\\cos(x)+c$\",\n \"$\\\\displaystyle \\\\int g(t) = \\\\sin(t)+c$\",\n \"$\\\\displaystyle \\\\int g(t) \\\\, dt = \\\\sin(x)+c$\",\n \"$\\\\displaystyle \\\\int \\\\cos(t) \\\\, dx = \\\\sin(t)+c$\",\n \"Integration is the same as differentiation.\",\n \"When integrating, there is no way to check your answer.\",\n \"You include $+c$ when integrating because it is just a rule you have to memorise.\",\n \"$\\\\frac{df}{dx}=-\\\\cos(x)$\",\n \"$\\\\frac{dg}{dt} = -\\\\sin(t)+c$\",\n \"Areas in a velocity-time graph equal changes in position.\",\n \"To calculate changes in position using areas in a velocity-time graph, you add the up the areas.\",\n \"To convert from velocity to position, you differentiate.\",\n \"$\\\\sec(x) = \\\\frac{1}{\\\\sin(x)}$\",\n \"$\\\\csc(x) = \\\\sin^{-1}(x)$\",\n \"The integral of $\\\\cos^2(x)$ is $\\\\sin^2(x)+c$\"\n]"}, "n": {"name": "n", "description": "", "templateType": "anything", "group": "change these", "definition": "17"}, "statements_true": {"name": "statements_true", "description": "", "templateType": "anything", "group": "change these", "definition": "[\"$\\\\displaystyle \\\\int f(x) \\\\, dx = -\\\\cos(x)+c$\",\n \"$\\\\displaystyle \\\\int \\\\sin(x) \\\\, dx = -\\\\cos(x)+c$\",\n \"$\\\\displaystyle \\\\int f(x) \\\\, dx = -\\\\cos(x)+c$\",\n \"$\\\\displaystyle \\\\int g(t) \\\\, dt = \\\\sin(t)+c$\",\n \"$\\\\displaystyle \\\\int g(t) \\\\, dt = \\\\sin(t)+c$\",\n \"$\\\\displaystyle \\\\int \\\\cos(t) \\\\, dt = \\\\sin(t)+c$\",\n \"Integration is the same as undoing differentiation.\",\n \"When integrating, you should check your answer by differentiating your answer.\",\n \"The constant of integration summarises the possibility that you can add any number to the function.\",\n \"$\\\\frac{df}{dx}=\\\\cos(x)$\",\n \"$\\\\frac{dg}{dt} = -\\\\sin(t)$\",\n \"Areas in a velocity-time graph correspond to distances travelled.\",\n \"To calculate changes in position using areas in a velocity-time graph, you need to think about when the object is moving forwards or backwards\",\n \"To convert from position to velocity, you differentiate.\",\n \"$\\\\sec(x) = \\\\frac{1}{\\\\cos(x)}$\",\n \"$\\\\csc(x) = \\\\frac{1}{\\\\sin(x)}$\",\n \"To integrate $\\\\cos^2(x)$, you need to re-write it in terms of $\\\\cos(2x)$\"\n]"}}, "variable_groups": [{"name": "change these", "variables": ["statements_true", "statements_false", "max_mark", "n", "a", "b", "c"]}, {"name": "do not change these", "variables": ["rand", "statements", "marks"]}], "type": "question", "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}]}], "contributors": [{"name": "Lovkush Agarwal", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1358/"}]}