// Numbas version: finer_feedback_settings
{"name": "Find coordinates of stationary points of polynomials", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "", "variables": {"x0": {"group": "Ungrouped variables", "description": "", "definition": "random(-3..3)", "name": "x0", "templateType": "anything"}, "c03": {"group": "Ungrouped variables", "description": "", "definition": "y03-((x03^3)/3-((x13+x23)/2)*x03^2+(x13*x23)*x03)", "name": "c03", "templateType": "anything"}, "x42": {"group": "Ungrouped variables", "description": "", "definition": "if(y12
\\[ \\simplify{ y = 2x^3-{3*(x1+x2)}x^2+{x1*x2*6}x+{c0} } \\]
\nDetermine the coordinates and the nature of the stationary points.
\nMinimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$
\nEnter fractions in their simplest form.
", "type": "gapfill", "showCorrectAnswer": true, "scripts": {}}, {"marks": 0, "gaps": [{"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{x32}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}, {"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{y32}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}, {"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{x42}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}, {"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{y42}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}], "prompt": "For the following function:
\n\\[ \\simplify{y = 2x^3-3{(x12+x22)}x^2+6{x12*x22}x+{c02}} \\]
\nDetermine the coordinates and the nature of the stationary points.
\nMinimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$
\nEnter fractions in their simplest form.
", "type": "gapfill", "showCorrectAnswer": true, "scripts": {}}, {"marks": 0, "gaps": [{"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{x33}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}, {"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{y33}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}, {"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{x43}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}, {"marks": 1, "expectedvariablenames": [], "showCorrectAnswer": true, "checkingtype": "absdiff", "type": "jme", "vsetrange": [0, 1], "answer": "{y43}", "scripts": {}, "showpreview": false, "vsetrangepoints": 5, "answersimplification": "all,fractionNumbers", "checkvariablenames": false, "checkingaccuracy": 0.001}], "prompt": "For the following function:
\n\\[ \\simplify[All,fractionNumbers]{y = {1}/{3}x^3-{(x13+x23)}/{2}x^2+{x13*x23}x+{c03}} \\]
\nDetermine the coordinates and the nature of the stationary points.
\nMinimum point: $\\big($ [[0]] $ , $ [[1]] $\\big)$ and maximum point: $\\big($ [[2]] $ , $ [[3]] $\\big)$
\nEnter fractions in their simplest form.
", "type": "gapfill", "showCorrectAnswer": true, "scripts": {}}], "preamble": {"js": "", "css": ""}, "type": "question", "ungrouped_variables": ["y1", "y0", "y3", "y2", "y4", "y02", "y03", "x1", "x43", "x42", "y42", "y43", "x03", "x02", "y22", "y23", "x23", "x22", "x2", "x3", "x0", "c0", "c02", "x4", "x32", "x33", "x13", "y33", "y32", "x12", "c03", "y13", "y12"], "variable_groups": [], "metadata": {"notes": "", "description": "Finding the coordinates and determining the nature of the stationary points on a polynomial function
", "licence": "Creative Commons Attribution 4.0 International"}, "tags": ["ACC1012", "acc1012", "checked2015"], "name": "Find coordinates of stationary points of polynomials", "question_groups": [{"pickingStrategy": "all-ordered", "questions": [], "pickQuestions": 0, "name": ""}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}