// Numbas version: exam_results_page_options {"name": "Trigonometry Q3 (Right angled triangle)", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"metadata": {"description": "

Draws a right angled triangle based on a length and an angle.

", "licence": "Creative Commons Attribution 4.0 International"}, "variables": {"unitList": {"definition": "[ \"mm\", \"cm\", \"m\", \"km\" ]", "description": "

Units that are to be used for the question.

", "group": "Ungrouped variables", "templateType": "list of strings", "name": "unitList"}, "units": {"definition": "random(unitList)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "units"}, "c": {"definition": "precround(a*tan(radians(angleB)),5)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "c"}, "b": {"definition": "precround(sqrt(a^2+c^2),2)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "b"}, "angleC": {"definition": "90-angleB", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "angleC"}, "angleB": {"definition": "random(30..60)", "description": "

angle

", "group": "Ungrouped variables", "templateType": "anything", "name": "angleB"}, "a": {"definition": "random(5..50)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "a"}}, "advice": "

Use SOHCAHTOA to relate the sides and angles.

", "ungrouped_variables": ["unitList", "units", "a", "angleB", "c", "b", "angleC"], "name": "Trigonometry Q3 (Right angled triangle)", "rulesets": {}, "preamble": {"css": "", "js": ""}, "tags": [], "variable_groups": [{"variables": [], "name": "Unnamed group"}], "statement": "

Referring to the triangle below.

{plotgraph(units,a,b,c,angleB,angleC)}

\n

What is the length of sides AC and BC?

\n

\n

AC = [[0]] {units}

\n

BC = [[1]] {units}

\n

What is angle C?

\n

C = [[2]] $^{\\circ}$