// Numbas version: finer_feedback_settings {"name": "Simon's copy of Q5 Solve Scientific Notation problems", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"advice": "

Carefully enter the calculations in your calculator as displayed.

\n

Note on many calculators there is a shortcut button for standard form e.g. on most Casio calculators there is a [$\\times10^x$] button. In this case you can enter $5\\times10^3$ by pressing [5] [$\\times10^x$] [3]

", "parts": [{"marks": 0, "gaps": [{"marks": 1, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "type": "numberentry", "maxValue": "{ans1}", "precision": "3", "allowFractions": false, "showCorrectAnswer": true, "unitTests": [], "mustBeReducedPC": 0, "showPrecisionHint": false, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "precisionType": "dp", "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "{ans1}", "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0}, {"marks": 1, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "type": "numberentry", "maxValue": "{ans2}", "precision": "3", "allowFractions": false, "showCorrectAnswer": true, "unitTests": [], "mustBeReducedPC": 0, "showPrecisionHint": false, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "precisionType": "dp", "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "{ans2}", "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0}, {"marks": 1, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true, "type": "numberentry", "maxValue": "{ans3}", "precision": "3", "allowFractions": false, "showCorrectAnswer": true, "unitTests": [], "mustBeReducedPC": 0, "showPrecisionHint": false, "variableReplacements": [], "notationStyles": ["plain", "en", "si-en"], "precisionType": "dp", "correctAnswerStyle": "plain", "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "{ans3}", "correctAnswerFraction": false, "scripts": {}, "mustBeReduced": false, "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0}], "type": "gapfill", "extendBaseMarkingAlgorithm": true, "variableReplacements": [], "prompt": "

i) $\\frac{\\var{num1[3]}\\times10^\\var{num11}+\\var{num1[4]}\\times10^\\var{num12}}{\\var{num1[5]}\\times10^\\var{num13}}$

\n

[[0]]

\n

ii) $\\frac{\\var{num2[0]}\\times10^\\var{num2[1]}\\times\\var{num2[2]}\\times10^\\var{num2[3]}}{\\var{num2[4]}\\times10^\\var{num2[5]}}$

\n

[[1]]

\n

iii) $\\frac{\\var{num3[0]}\\times10^\\var{po[1]}-\\var{num3[1]}\\times10^\\var{po1}}{\\var{num3[2]}\\times10^\\var{po[2]}\\times\\var{num3[3]}\\times10^\\var{po[3]}}$

\n

[[2]]

", "showCorrectAnswer": true, "showFeedbackIcon": true, "customMarkingAlgorithm": "", "scripts": {}, "sortAnswers": false, "unitTests": [], "variableReplacementStrategy": "originalfirst"}], "tags": [], "name": "Simon's copy of Q5 Solve Scientific Notation problems", "extensions": [], "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "(ans1>0.001) and (ans2>0.001) and (ans3>0.001)"}, "ungrouped_variables": ["num1", "num11", "num12", "num13", "num2", "po", "po1", "num3", "ans1", "ans2", "ans3"], "preamble": {"js": "", "css": ""}, "functions": {}, "rulesets": {}, "metadata": {"description": "

Scientific Notation

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate each of the following using a calculator:

\n

Answer in decimal form, and give all answers to exactly 3 decimal places.

", "variables": {"num11": {"definition": "-1*num1[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "num11", "description": ""}, "num2": {"definition": "repeat(random(2..5),7)", "templateType": "anything", "group": "Ungrouped variables", "name": "num2", "description": ""}, "po1": {"definition": "-1*po[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "po1", "description": ""}, "num1": {"definition": "shuffle(2..9)[0..6]", "templateType": "anything", "group": "Ungrouped variables", "name": "num1", "description": ""}, "ans2": {"definition": "(num2[0]*10^num2[1]*num2[2]*10^num2[3])/(num2[4]*10^num2[5])", "templateType": "anything", "group": "Ungrouped variables", "name": "ans2", "description": ""}, "ans1": {"definition": "(num1[3]*10^num11+num1[4]*10^num12)/(num1[5]*10^num13)", "templateType": "anything", "group": "Ungrouped variables", "name": "ans1", "description": ""}, "num12": {"definition": "-1*num1[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "num12", "description": ""}, "po": {"definition": "repeat(random(2..6),5)", "templateType": "anything", "group": "Ungrouped variables", "name": "po", "description": ""}, "ans3": {"definition": "(num3[0]*10^po[1]-num3[1]*10^po1)/(num3[2]*10^po[2]*num3[3]*10^po[3])", "templateType": "anything", "group": "Ungrouped variables", "name": "ans3", "description": ""}, "num3": {"definition": "shuffle(2..5#0.1)[0..4]", "templateType": "anything", "group": "Ungrouped variables", "name": "num3", "description": ""}, "num13": {"definition": "-1*num1[2]", "templateType": "anything", "group": "Ungrouped variables", "name": "num13", "description": ""}}, "type": "question", "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}