// Numbas version: finer_feedback_settings {"name": "Simon's copy of Q4 Calculating volume of different containers", "extensions": [], "custom_part_types": [], "resources": [["question-resources/1.png", "1.png"], ["question-resources/charles1.1.gif", "charles1.1.gif"], ["question-resources/formula-explanation-sphere-1.jpg", "formula-explanation-sphere-1.jpg"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "ungrouped_variables": ["size1", "size2", "ans1", "ans2", "ans3"], "variables": {"ans1": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "ans1", "definition": "pi*(((size1[0])/2)^2)*size2[0]"}, "ans2": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "ans2", "definition": "(1/3)*(pi*(((size1[1])/2)^2)*size2[1])"}, "size2": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "size2", "definition": "shuffle(11..17#1)[0..5]"}, "size1": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "size1", "definition": "shuffle(7..10#1)[0..5]"}, "ans3": {"group": "Ungrouped variables", "templateType": "anything", "description": "", "name": "ans3", "definition": "(4/3)*(pi*(((size1[2])/2)^3))"}}, "parts": [{"prompt": "

\n

Find the volume of a cylindrical container of height $\\var{size2[0]}$cm and diameter $\\var{size1[0]}$cm.

\n

[[0]] cm$^3$

", "showFeedbackIcon": true, "variableReplacements": [], "stepsPenalty": 0, "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "marks": 1, "precisionType": "dp", "showCorrectAnswer": true, "showPrecisionHint": false, "unitTests": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "allowFractions": false, "variableReplacements": [], "scripts": {}, "precision": "2", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "{ans1}", "precisionPartialCredit": 0, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "precisionMessage": "You have not given your answer to the correct precision.", "minValue": "{ans1}", "extendBaseMarkingAlgorithm": true}], "showCorrectAnswer": true, "steps": [{"showCorrectAnswer": true, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "unitTests": [], "customMarkingAlgorithm": "", "prompt": "

The volume of a cylinder is given by $V=\\pi r^2h$ where $h$ is the height.

\n

Don't forget to use the radius rather than the diameter.

", "showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "information"}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false}, {"prompt": "

\n

Calculate the volume of a conical container of perpendicular height $\\var{size2[1]}$cm and diameter $\\var{size1[1]}$cm.

\n

[[0]] cm$^3$

\n

", "showFeedbackIcon": true, "variableReplacements": [], "stepsPenalty": 0, "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "marks": 1, "precisionType": "dp", "showCorrectAnswer": true, "showPrecisionHint": false, "unitTests": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "allowFractions": false, "variableReplacements": [], "scripts": {}, "precision": "2", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "{ans2}", "precisionPartialCredit": 0, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "precisionMessage": "You have not given your answer to the correct precision.", "minValue": "{ans2}", "extendBaseMarkingAlgorithm": true}], "showCorrectAnswer": true, "steps": [{"showCorrectAnswer": true, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "unitTests": [], "customMarkingAlgorithm": "", "prompt": "

The volume of a cone is given by $V=\\frac{1}{3}\\pi r^2h$ where $h$ is the perpendicular height.

", "showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "information"}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false}, {"prompt": "

\n

Find the volume of a spherical container of diameter $\\var{size1[2]}$cm.

\n

[[0]] cm$^3$

", "showFeedbackIcon": true, "variableReplacements": [], "stepsPenalty": 0, "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "variableReplacementStrategy": "originalfirst", "type": "gapfill", "gaps": [{"correctAnswerFraction": false, "mustBeReduced": false, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "marks": 1, "precisionType": "dp", "showCorrectAnswer": true, "showPrecisionHint": false, "unitTests": [], "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "allowFractions": false, "variableReplacements": [], "scripts": {}, "precision": "2", "variableReplacementStrategy": "originalfirst", "type": "numberentry", "maxValue": "{ans3}", "precisionPartialCredit": 0, "notationStyles": ["plain", "en", "si-en"], "strictPrecision": false, "precisionMessage": "You have not given your answer to the correct precision.", "minValue": "{ans3}", "extendBaseMarkingAlgorithm": true}], "showCorrectAnswer": true, "steps": [{"showCorrectAnswer": true, "scripts": {}, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "unitTests": [], "customMarkingAlgorithm": "", "prompt": "

The volume of a sphere is given by $V=\\frac{4}{3}\\pi r^3$.

", "showFeedbackIcon": true, "marks": 0, "variableReplacementStrategy": "originalfirst", "type": "information"}], "unitTests": [], "extendBaseMarkingAlgorithm": true, "sortAnswers": false}], "variablesTest": {"condition": "", "maxRuns": 100}, "name": "Simon's copy of Q4 Calculating volume of different containers", "variable_groups": [], "functions": {}, "advice": "

Remember to convert diameter to radius by dividing by 2.

\n

(a)

\n

Volume of cylindrical container

\n

$V = \\pi r^2h$

\n

$\\pi \\times (\\frac{\\var{size1[0]}}{2})^2 \\times \\var{size2[0]} = \\var{precround(ans1,2)}$

\n

(b)

\n

Volume of conical container

\n

$V = \\frac{1}{3}\\pi r^2h$

\n

$\\frac{1}{3} \\times\\pi \\times (\\frac{\\var{size1[1]}}{2})^2 \\times \\var{size2[1]} = \\var{precround(ans2,2)}$

\n

(c)

\n

Volume of spherical container

\n

$V = \\frac{4}{3}\\pi r^3$

\n

$\\frac{4}{3} \\times\\pi \\times (\\frac{\\var{size1[2]}}{2})^3 = \\var{precround(ans3,2)}$

", "preamble": {"css": "", "js": ""}, "statement": "

Solve the following volume questions to 2 decimal places.

", "tags": [], "metadata": {"description": "

Calculating the volumes of different containers

\n

rebelmaths

", "licence": "Creative Commons Attribution 4.0 International"}, "extensions": [], "type": "question", "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}], "resources": ["question-resources/1.png", "question-resources/charles1.1.gif", "question-resources/formula-explanation-sphere-1.jpg"]}]}], "contributors": [{"name": "TEAME CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/591/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}