// Numbas version: finer_feedback_settings {"name": "Simon's copy of Geometric progression: The sum of the first n terms of a geometric progression", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"statement": "

The first three terms of a geometric progression are given by:  

\n

\\(\\var{a} + \\simplify{{a}*{r}} + \\simplify{{a}*{r}^2}\\,+ \\, ...........\\)

", "variable_groups": [], "preamble": {"js": "", "css": ""}, "extensions": [], "rulesets": {}, "variables": {"n": {"description": "", "group": "Ungrouped variables", "definition": "random(4..12#1)", "name": "n", "templateType": "randrange"}, "r": {"description": "", "group": "Ungrouped variables", "definition": "random(0.4..2.4#0.2)", "name": "r", "templateType": "randrange"}, "s": {"description": "", "group": "Ungrouped variables", "definition": "({a}*(1-{r}^{n}))/(1-{r})", "name": "s", "templateType": "anything"}, "a": {"description": "", "group": "Ungrouped variables", "definition": "random(1..12#1)", "name": "a", "templateType": "randrange"}}, "tags": [], "functions": {}, "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": "

Find the sum of the first n terms of a Geometric progression

"}, "variablesTest": {"maxRuns": 100, "condition": "r<>1"}, "advice": "

If the ratio between successive pairs of terms is a constant then the series under examination is a geometric progression.

\n

Ths first term is \\(a\\) and the common ratio is \\(r\\).

\n

The formula for the sum of the first \\(n\\) terms of the series is given by:    \\(S_n=\\frac{a(1-r^{n})}{1-r}\\)

\n

In this example \\(a=\\var{a}\\),   \\(r = \\frac{\\simplify{{a}*{r}}}{\\var{a}}=\\var{r}\\)  and  \\(n = \\var{n}\\)

\n

\\(S_\\var{n}=\\frac{\\var{a}(1-(\\var{r})^{\\var{n}})}{1-\\var{r}}\\)

\n

\\(S_\\var{n}=\\frac{\\var{a}\\times(\\simplify{1-{r}^{n}})}{\\simplify{1-{r}}}\\)

\n

\\(S_\\var{n}=\\frac{\\simplify{{a}*(1-{r}^{n})}}{\\simplify{1-{r}}}\\)

\n

\\(S_\\var{n}=\\var{precround(s,3)}\\)

", "name": "Simon's copy of Geometric progression: The sum of the first n terms of a geometric progression", "ungrouped_variables": ["a", "r", "n", "s"], "parts": [{"showFeedbackIcon": true, "unitTests": [], "scripts": {}, "sortAnswers": false, "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "type": "gapfill", "marks": 0, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "prompt": "

Calculate the sum of the first \\(\\var{n}\\) terms of the series.

\n

\\(S_\\var{n}=\\) [[0]]

", "gaps": [{"maxValue": "{s}", "precision": "3", "scripts": {}, "precisionType": "dp", "mustBeReducedPC": 0, "variableReplacements": [], "minValue": "{s}", "unitTests": [], "allowFractions": false, "showPrecisionHint": true, "precisionMessage": "You have not given your answer to the correct precision.", "type": "numberentry", "showFeedbackIcon": true, "mustBeReduced": false, "precisionPartialCredit": 0, "extendBaseMarkingAlgorithm": true, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "strictPrecision": false, "correctAnswerFraction": false, "customMarkingAlgorithm": "", "correctAnswerStyle": "plain"}], "customMarkingAlgorithm": ""}], "type": "question", "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}