// Numbas version: finer_feedback_settings {"name": "Chris's copy of PDF and CDF of continuous uniform random variable,", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "question_groups": [{"questions": [], "pickQuestions": 0, "pickingStrategy": "all-ordered", "name": ""}], "preamble": {"js": "", "css": ""}, "showQuestionGroupNames": false, "name": "Chris's copy of PDF and CDF of continuous uniform random variable,", "statement": "
Suppose $X$ is a continuous uniform random variable defined on $[\\var{a},\\;\\var{b}]$.
", "type": "question", "rulesets": {"std": ["all", "fractionNumbers", "!collectNumbers", "!noLeadingMinus"]}, "ungrouped_variables": ["a", "x1", "b"], "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "a)
\nThe PDF is given by:
\n\n
$f_X(x) = \\left \\{ \\begin{array}{l} \\phantom{{.}} \\\\\\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}}\\end{array} \\right .$ | \n\\[\\frac{1}{\\var{b}-(\\var{a})}=\\frac{1}{\\var{b-a}}\\] | \n$\\var{a} \\leq x \\leq \\var{b},$ | \n
$0$ | \notherwise | \n
b) The CDF is given by:
\n$F_X(x) = \\left \\{ \\begin{array}{l} \\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}}\\\\ \\phantom{{.}}\\\\ \\phantom{{.}} \\end{array} \\right .$ | \n$0$ | \n$x \\lt \\var{a},$ | \n
\n | \n | |
\\[\\simplify{(x-{a})/{b-a}}\\] | \n$\\var{a} \\leq x \\leq \\var{b}$ | \n|
\n | \n | |
1 | \n$ x \\gt \\var{b},$ | \n|
\n | \n |
c)
\n\\[P(X \\ge \\var{x1})=1-F_X(\\var{x1})=1-\\simplify[std]{({x1}-{a})/{b-a}={b-x1}/{b-a}}\\]
\n", "tags": ["CFD", "checked2015", "continuous random variables", "cumulative distribution functions", "density functions", "distribution function", "distribution functions", "MAS1604", "MAS2304", "pdf", "PDF", "Probability", "probability density function", "random variables", "statistics", "uniform random variable"], "variables": {"b": {"description": "", "definition": "a+random(5..12)", "group": "Ungrouped variables", "templateType": "anything", "name": "b"}, "x1": {"description": "", "definition": "a+random(1..4)", "group": "Ungrouped variables", "templateType": "anything", "name": "x1"}, "a": {"description": "", "definition": "random(-5..5)", "group": "Ungrouped variables", "templateType": "anything", "name": "a"}}, "parts": [{"type": "gapfill", "marks": 0, "prompt": "
\n
What is the PDF of $X$? Input all answers as fractions or integers, not as decimals.
\n$f_X(x) = \\left \\{ \\begin{array}{l} \\phantom{{.}} \\\\\\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}}\\end{array} \\right .$ | \n[[0]] | \n$\\var{a} \\leq x \\leq \\var{b},$ | \n
[[1]] | \notherwise | \n
", "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showCorrectAnswer": true, "type": "jme", "marks": 0.5, "showpreview": true, "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "
input as a fraction and not a decimal
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "answer": "1/{b-a}", "vsetrange": [0, 1], "expectedvariablenames": [], "checkingaccuracy": 0.001, "checkvariablenames": false}, {"checkingtype": "absdiff", "scripts": {}, "showCorrectAnswer": true, "type": "jme", "marks": 0.5, "vsetrange": [0, 1], "vsetrangepoints": 5, "notallowed": {"message": "Input as a fraction or an integer.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "answer": "0", "showpreview": true, "expectedvariablenames": [], "checkingaccuracy": 0.001, "checkvariablenames": false}], "showCorrectAnswer": true, "scripts": {}}, {"type": "gapfill", "marks": 0, "prompt": "Compute the CDF $F_X(x)$ of $X$.
\n$F_X(x) = \\left \\{ \\begin{array}{l} \\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}} \\\\ \\phantom{{.}}\\\\ \\phantom{{.}}\\\\ \\phantom{{.}} \\end{array} \\right .$ | \n[[0]] | \n$x \\lt \\var{a},$ | \n
\n | \n | |
[[1]] | \n$\\var{a} \\leq x \\leq \\var{b}$ | \n|
\n | \n | |
[[2]] | \n$ x \\gt \\var{b},$ | \n|
\n | \n |
Input all numbers as fractions or integers in the above formulae.
", "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showCorrectAnswer": true, "checkingaccuracy": 0.001, "type": "jme", "marks": 0.5, "vsetrange": [0, 1], "vsetrangepoints": 5, "answer": "0", "showpreview": true, "checkvariablenames": false, "expectedvariablenames": []}, {"checkingtype": "absdiff", "scripts": {}, "showCorrectAnswer": true, "type": "jme", "marks": 1, "showpreview": true, "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "input numbers as fractions or integers and not as decimals
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "answer": "(x-{a})/({b-a})", "vsetrange": [0, 1], "expectedvariablenames": [], "checkingaccuracy": 0.001, "checkvariablenames": false}, {"checkingtype": "absdiff", "scripts": {}, "showCorrectAnswer": true, "type": "jme", "marks": 0.5, "showpreview": true, "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "input numbers as fractions or integers and not as decimals
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "answer": "1", "vsetrange": [0, 1], "expectedvariablenames": [], "checkingaccuracy": 0.001, "checkvariablenames": false}], "showCorrectAnswer": true, "scripts": {}}, {"type": "gapfill", "marks": 0, "prompt": "Also, using the distribution function above find:
\n$P( X \\ge \\var{x1})=\\;\\;$[[0]]
\n(input your answer as a fraction or integer and not as a decimal).
", "gaps": [{"checkingtype": "absdiff", "scripts": {}, "showCorrectAnswer": true, "type": "jme", "marks": 1, "showpreview": true, "answersimplification": "std", "vsetrangepoints": 5, "notallowed": {"message": "Input all numbers as fractions or integers.
", "showStrings": false, "strings": ["."], "partialCredit": 0}, "answer": "{b-x1}/{b-a}", "vsetrange": [0, 1], "expectedvariablenames": [], "checkingaccuracy": 0.001, "checkvariablenames": false}], "showCorrectAnswer": true, "scripts": {}}], "metadata": {"description": "$X$ is a continuous uniform random variable defined on $[a,\\;b]$. Find the PDF and CDF of $X$ and find $P(X \\ge c)$.
", "notes": "05/02/2013:
\nFirst draft finished.
", "licence": "Creative Commons Attribution 4.0 International"}, "variable_groups": [], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Chris Tanton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3211/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Chris Tanton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3211/"}]}