// Numbas version: exam_results_page_options {"name": "Simon's copy of Binomial series for non-Natural exponent", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false}, "question_groups": [{"questions": [{"functions": {}, "type": "question", "variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Given the expression \$$(1+\\var{b}x)^{\\frac{1}{\\var{n}}}\$$

The binomial series expansion for an expression of the form \$$(1+bx)^{n}\$$ where \$$n\$$ is a non-natural number, is given by:

\n

\$$(1+bx)^{n}=1+n(bx)^{1}+\\frac{n(n-1)}{2!}(bx)^{2}+\\frac{n(n-1)(n-2)}{3!}(bx)^{3}+...\$$

\n

In this example  \$$n=\\frac{1}{\\var{n}}\$$,   and  \$$b=\\var{b}\$$.

\n

So the first three terms are

\n

\$$(1+\\var{b}x)^{\\frac{1}{\\var{n}}}=1+{\\frac{1}{\\var{n}}}(\\var{b}x)^{1}+\\frac{{\\frac{1}{\\var{n}}}\\times (\\frac{1}{\\var{n}}-1)}{2!}(\\var{b}x)^{2}\$$

\n

\$$(1+\\var{b}x)^{\\frac{1}{\\var{n}}}\$$= $\\simplify[all,!collectNumbers]{{T1}+{T2}x+{T3}x^2}$

", "ungrouped_variables": ["b", "n", "T1", "T2", "T3"], "rulesets": {}, "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}], "parts": [{"type": "jme", "showCorrectAnswer": true, "answer": "{T1}+{T2}x+{T3}x^2", "expectedVariableNames": [], "showPreview": true, "checkingType": "absdiff", "variableReplacements": [], "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst", "vsetRange": [0, 1], "scripts": {}, "checkVariableNames": false, "vsetRangePoints": 5, "extendBaseMarkingAlgorithm": true, "answerSimplification": "all,!collectNumbers", "unitTests": [], "prompt": "

Input the first three tems in the binomial series expansion.

", "checkingAccuracy": 0.001, "failureRate": 1, "customMarkingAlgorithm": "", "marks": "3"}], "variable_groups": [], "name": "Simon's copy of Binomial series for non-Natural exponent", "extensions": [], "variables": {"n": {"definition": "random(2..6#1)", "group": "Ungrouped variables", "description": "", "name": "n", "templateType": "randrange"}, "T3": {"definition": "{b}^2*(1/{n}*(1/{n}-1))/2", "group": "Ungrouped variables", "description": "", "name": "T3", "templateType": "anything"}, "T2": {"definition": "{b}/{n}", "group": "Ungrouped variables", "description": "", "name": "T2", "templateType": "anything"}, "T1": {"definition": "1", "group": "Ungrouped variables", "description": "", "name": "T1", "templateType": "anything"}, "b": {"definition": "random(2..12#1)", "group": "Ungrouped variables", "description": "", "name": "b", "templateType": "randrange"}}, "tags": [], "metadata": {"licence": "Creative Commons Attribution-NonCommercial 4.0 International", "description": "

Find the first three terms in the binomial series expansion having a non-Natural exponent

"}, "preamble": {"css": "", "js": ""}}], "pickingStrategy": "all-ordered"}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}