// Numbas version: finer_feedback_settings {"name": "Simon's copy of Julie's copy of Algebra: Expansion of two brackets (one linear)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"type": "gapfill", "variableReplacementStrategy": "originalfirst", "gaps": [{"answer": "{a*c}x^2+{a*d}x", "type": "jme", "variableReplacementStrategy": "originalfirst", "answerSimplification": "std", "marks": 1, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "checkVariableNames": false, "expectedVariableNames": [], "checkingType": "absdiff", "unitTests": [], "showFeedbackIcon": true, "showPreview": true, "checkingAccuracy": 0.001, "scripts": {}, "maxlength": {"partialCredit": 0, "length": 13, "message": "
Input your answer as a quadratic in $x$, in the form $ax^2+bx+c$ for appropriate integers $a,\\;b,\\;c$.
"}, "vsetRange": [0, 1], "vsetRangePoints": 5, "notallowed": {"partialCredit": 0, "strings": ["(", ")"], "message": "Do not include brackets in your answer. Input your answer as a quadratic in $x$, in the form $ax^2+bx+c$ for appropriate integers $a,\\;b,\\;c$.
", "showStrings": false}, "musthave": {"partialCredit": 0, "strings": ["^2"], "message": "", "showStrings": false}}, {"answer": "{a1*c1}*x^2+{b1*c1}*x", "type": "jme", "variableReplacementStrategy": "originalfirst", "answerSimplification": "std", "marks": 1, "extendBaseMarkingAlgorithm": true, "failureRate": 1, "showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "checkVariableNames": false, "expectedVariableNames": [], "checkingType": "absdiff", "unitTests": [], "showFeedbackIcon": true, "showPreview": true, "checkingAccuracy": 0.001, "scripts": {}, "maxlength": {"partialCredit": 0, "length": 13, "message": "Input your answer as a quadratic in $x$, in the form $ax^2+bx+c$ for appropriate integers $a,\\;b,\\;c$.
"}, "vsetRange": [0, 1], "vsetRangePoints": 5, "notallowed": {"partialCredit": 0, "strings": ["(", ")"], "message": "Do not include brackets in your answer. Input your answer as a quadratic in $x$, in the form $ax^2+bx+c$ for appropriate integers $a,\\;b,\\;c$.
", "showStrings": false}, "musthave": {"partialCredit": 0, "strings": ["^2"], "message": "", "showStrings": false}}], "sortAnswers": false, "marks": 0, "scripts": {}, "prompt": "(a) $\\simplify[std]{({a}x)({c}x+{d})}=\\;$[[0]].
\n(b) $\\var{c1}x(\\simplify[std]{({a1}x+{b1})})=\\;$[[1]].
\nYour answers should be quadratics in $x$ and should not include any brackets.
\n", "showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "unitTests": [], "showFeedbackIcon": true}], "variablesTest": {"condition": "", "maxRuns": 100}, "variable_groups": [], "extensions": [], "variables": {"b": {"definition": "0", "name": "b", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "a": {"definition": "random(-5..5 except 0)", "name": "a", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "c": {"definition": "random(-5..5 except 0)", "name": "c", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "c1": {"definition": "random(-5..5 except 0 except 1 except -1)", "name": "c1", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "b1": {"definition": "random(-9..9 except [0,c])", "name": "b1", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "a1": {"definition": "random(-5..5 except [0,a])", "name": "a1", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "d": {"definition": "random(-9..9 except [0,c])", "name": "d", "description": "", "group": "Ungrouped variables", "templateType": "anything"}}, "ungrouped_variables": ["a", "c", "b", "d", "a1", "b1", "c1"], "name": "Simon's copy of Julie's copy of Algebra: Expansion of two brackets (one linear)", "statement": "Expand the following to give quadratics in $x$.
", "tags": [], "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "Expansion of two brackets
\nrebelmaths
"}, "advice": "You need to multiply every term inside the brackets by the term outside the brackets:
\n(a)
\n$\\simplify[std]{ {a}x*({c}x+{d})}=(\\var{a}x \\times \\var{c}x)+(\\var{a}x \\times\\var{d})=\\simplify[std]{{a*c}x^2+{a*d}x}$
\n(b)
\n$\\var{c1}x(\\simplify[std]{({a1}x+{b1})})=(\\var{c1}x\\times \\var{a1}x)+(\\var{c1}x \\times\\var{b1})=\\simplify[std]{{a1*c1}x^2+{b1*c1}x}$
\n\n
", "preamble": {"js": "", "css": ""}, "rulesets": {"std": ["all", "!noLeadingMinus", "!collectNumbers"]}, "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}