// Numbas version: finer_feedback_settings {"name": "Simon's copy of Simon's copy of Integration by partial fractions. (Video)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"tags": ["2 distinct linear factors", "Calculus", "Steps", "calculus", "completing the square", "constant of integration", "factorising a quadratic", "indefinite integration", "integrals", "integration", "logarithms", "partial fractions", "steps", "two distinct linear factors", "video"], "question_groups": [{"pickingStrategy": "all-ordered", "name": "", "pickQuestions": 0, "questions": []}], "showQuestionGroupNames": false, "parts": [{"steps": [{"type": "information", "marks": 0.0, "prompt": "
First of all factorise the denominator.
\nYou have to find $a$ and $b$ such that $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+a)*(x+b)}$
\nThen use partial fractions to write:
\\[\\simplify[std]{({c}*x+{d})/((x +a)*(x+b)) = A/(x+a)+B/(x+b)}\\]
for suitable integers or fractions $A$ and $B$.
\nThis video solves a similar, simpler example.
\n "}], "stepspenalty": 1.0, "gaps": [{"checkingtype": "absdiff", "vsetrange": [11.0, 12.0], "notallowed": {"showstrings": false, "partialcredit": 0.0, "message": "Input all numbers as fractions or integers and not decimals.
", "strings": ["."]}, "type": "jme", "marks": 3.0, "answer": "({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C", "vsetrangepoints": 5.0, "answersimplification": "std", "checkingaccuracy": 0.001}], "prompt": "$I=\\;$[[0]]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\nClick on Show steps for help if you need it. You will lose 1 mark if you do so.
\nThere is a video in Show steps which solves a similar example.
", "type": "gapfill", "marks": 0.0}], "type": "question", "progress": "ready", "statement": "\nFind the following integral.
\n\\[I = \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\]
\nInput all numbers as fractions or integers and not decimals.
\nInput the constant of integration as $C$.
\n \n ", "advice": "\nFirst we factorise $\\simplify[std]{x^2+{a+b}*x+{a*b}=(x+{a})*(x+{b})}$. You can do this by spotting the factors or by completing the square.
Next we use partial fractions to find $A$ and $B$ such that:
\\[\\displaystyle \\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = A/(x+{a})+B/(x+{b})}\\]
Multiplying both sides of the equation by $\\displaystyle \\simplify[std]{1/((x +{a})*(x+{b}))}$ we obtain:
$\\simplify[std]{A*(x+{b})+B*(x+{a}) = {c}*x+{d}} \\Rightarrow \\simplify[std]{(A+B)*x+{b}*A+{a}*B={c}*x+{d}}$
\nIdentifying coefficients:
\nConstant term: $\\simplify[std]{{b}*A+{a}*B = {d}}$
\nCoefficent $x$: $ \\simplify[std]{A+B={c}}$ which gives $A =\\var{c} -B$
\nOn solving these equations we obtain $\\displaystyle \\simplify[std]{A = {d-a*c}/{b-a}}$ and $\\displaystyle \\simplify[std]{B={d-b*c}/{a-b}}$
\nWhich gives: \\[\\simplify[std]{({c}*x+{d})/((x +{a})*(x+{b})) = ({d-a*c}/{b-a})*(1/(x+{a}) )+({d-b*c}/{a-b})*(1/(x+{b}))}\\]
\nSo \\[\\begin{eqnarray*} I &=& \\simplify[std]{Int(({c}*x+{d})/(x^2+{a+b}*x+{a*b}),x )}\\\\ &=&\\simplify[std]{Int(({c}*x+{d})/((x +{a})*(x+{b})),x )}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*(Int(1/(x+{a}),x)) +({d-b*c}/{a-b})Int(1/(x+{b}),x)}\\\\ &=& \\simplify[std]{({d-a*c}/{b-a})*ln(x+{a})+({d-b*c}/{a-b})*ln(x+{b})+C} \\end{eqnarray*}\\]
\n ", "metadata": {"description": "Factorise $x^2+cx+d$ into 2 distinct linear factors and then find $\\displaystyle \\int \\frac{ax+b}{x^2+cx+d}\\;dx,\\;a \\neq 0$ using partial fractions or otherwise.
\nVideo in Show steps.
", "notes": "\n \t\t \t\t5/08/2012:
\n \t\t \t\tAdded tags.
\n \t\t \t\tAdded description.
\n \t\t \t\tAdded decimal point as forbidden string.
\n \t\t \t\tNote the checking range is chosen so that the arguments of the log terms are always positive - could have used abs - might be better?
\n \t\t \t\tImproved display of Advice.
\n \t\t \t\tAdded information about Show steps, also introduced penalty of 1 mark.
\n \t\t \t\tAdded !noLeadingMinus to ruleset std for display purposes.
\n \t\t \n \t\t", "licence": "Creative Commons Attribution 4.0 International"}, "name": "Simon's copy of Simon's copy of Integration by partial fractions. (Video)", "variable_groups": [], "variables": {"a": {"name": "a", "definition": "s1*random(1..9)"}, "c": {"name": "c", "definition": "random(2..9)"}, "d1": {"name": "d1", "definition": "s3*random(1..9)"}, "s2": {"name": "s2", "definition": "random(1,-1)"}, "s3": {"name": "s3", "definition": "random(1,-1)"}, "b1": {"name": "b1", "definition": "s2*random(1..9)"}, "s1": {"name": "s1", "definition": "random(1,-1)"}, "d": {"name": "d", "definition": "if(d1=a*c,if(d1+1=b*c,d1+2,d1+1),if(d1=b*c,if(d1+1=a*c,d1+2,d1+1),d1))"}, "b": {"name": "b", "definition": "if(b1=a,b1+s3,b1)"}}, "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "extensions": [], "functions": {}, "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}