// Numbas version: finer_feedback_settings {"name": "Calculate descriptive statistics for a sample", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "extensions": ["stats"], "advice": "

a)

\n

The mean is the sum of all the responses ($\\sum x$) divided by the number of responses ($n$).

\n

Here, $n = 20$.

\n

\\begin{align}
\\sum x &= \\var{a[0]} + \\var{a[1]} +\\var{a[2]} +\\var{a[3]} +\\var{a[4]} +\\var{a[5]} +\\var{a[6]} +\\var{a[7]} +\\var{a[8]} +\\var{a[9]} + \\var{a[10]} + \\var{a[11]} +\\var{a[12]} +\\var{a[13]} +\\var{a[14]} +\\var{a[15]} +\\var{a[16]} +\\var{a[17]} +\\var{a[18]} +\\var{a[19]} \\\\
&= \\var{sum(a)} \\text{.}
\\end{align}

\n

Therefore we calculate the mean

\n

\\begin{align}
\\overline{x} &= \\frac{\\sum x}{n} \\\\[0.5em]
&= \\frac{\\var{sum(a)}}{20} \\\\[0.5em]
&= \\var{mean} \\text{.}
\\end{align}

\n

 

\n

b)

\n

The median is the middle value. We need to sort the list in order:

\n

\\[ \\var{as[0]}, \\quad \\var{as[1]}, \\quad \\var{as[2]}, \\quad \\var{as[3]}, \\quad \\var{as[4]}, \\quad \\var{as[5]}, \\quad \\var{as[6]}, \\quad \\var{as[7]}, \\quad \\var{as[8]}, \\quad \\var{as[9]}, \\quad \\var{as[10]}, \\quad \\var{as[11]}, \\quad \\var{as[12]}, \\quad \\var{as[13]}, \\quad \\var{as[14]}, \\quad \\var{as[15]}, \\quad \\var{as[16]}, \\quad \\var{as[17]}, \\quad \\var{as[18]}, \\quad \\var{as[19]} \\]

\n

There is an even number of responses, so there are two numbers in the middle (10th and 11th place). To find the median, we need to find the mean of these two numbers $\\var{as[9]}$ and $\\var{as[10]}$:

\n

\\begin{align}
\\frac{\\var{as[9]} + \\var{as[10]}}{2} &=  \\frac{\\var{as[9] + as[10]}}{2} \\\\
&= \\var{median} \\text{.} 
\\end{align}

\n

 

\n

c)

\n

The mode is the value that occurs the most often in the data.

\n

To find a mode, we can look at our sorted list:

\n

$\\var{as[0]}, \\var{as[1]}, \\var{as[2]}, \\var{as[3]}, \\var{as[4]}, \\var{as[5]}, \\var{as[6]}, \\var{as[7]}, \\var{as[8]}, \\var{as[9]}, \\var{as[10]}, \\var{as[11]}, \\var{as[12]}, \\var{as[13]}, \\var{as[14]}, \\var{as[15]}, \\var{as[16]}, \\var{as[17]}, \\var{as[18]}, \\var{as[19]}$.

\n

We notice that $\\var{mode1}$ occurs the most ($\\var{modetimes[mode1]}$ times) so $\\var{mode1}$ is the mode.

\n

 

\n

d)

\n

Range is the difference between the highest and the lowest value in the data.

\n

To find this, we subtract the lowest value from the highest value:

\n

\\[ \\var{max(a)} - \\var{min(a)} = \\var{range} \\text{.}\\]

", "parts": [{"prompt": "

Find the mean.

", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "correctAnswerFraction": false, "scripts": {}, "marks": 1, "maxValue": "mean", "allowFractions": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "mustBeReduced": false, "variableReplacements": [], "unitTests": [], "mustBeReducedPC": 0, "showCorrectAnswer": true, "type": "numberentry", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "mean"}, {"prompt": "

Find the median.

", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "correctAnswerFraction": false, "scripts": {}, "marks": 1, "maxValue": "median", "allowFractions": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "mustBeReduced": false, "variableReplacements": [], "unitTests": [], "mustBeReducedPC": 0, "showCorrectAnswer": true, "type": "numberentry", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "median"}, {"prompt": "

Find the mode.

", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "correctAnswerFraction": false, "scripts": {}, "marks": 1, "maxValue": "mode1", "allowFractions": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "mustBeReduced": false, "variableReplacements": [], "unitTests": [], "mustBeReducedPC": 0, "showCorrectAnswer": true, "type": "numberentry", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "mode1"}, {"prompt": "

Find the standard deviation.

", "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain", "correctAnswerFraction": false, "scripts": {}, "marks": 1, "maxValue": "sd", "allowFractions": false, "variableReplacementStrategy": "originalfirst", "customMarkingAlgorithm": "", "mustBeReduced": false, "variableReplacements": [], "unitTests": [], "mustBeReducedPC": 0, "showCorrectAnswer": true, "type": "numberentry", "extendBaseMarkingAlgorithm": true, "showFeedbackIcon": true, "minValue": "sd"}], "metadata": {"description": "

This question provides a list of data to the student. They are asked to find the mean, median, mode and range.

", "licence": "Creative Commons Attribution 4.0 International"}, "rulesets": {}, "statement": "

Consider the following sample:

\n

{a[0]}

\n

{a[1]}

\n

{a[2]}

\n

{a[3]}

\n

{a[4]}

\n

{a[5]}

\n

{a[6]}

\n

{a[7]}

\n

{a[8]}

\n

{a[9]}

\n

{a[10]}

\n

{a[11]}

\n

{a[12]}

\n

{a[13]}

\n

{a[14]}

\n

{a[15]}

\n

{a[16]}

\n

{a[17]}

\n

{a[18]}

\n

{a[19]}

\n

", "tags": [], "functions": {}, "variables": {"modea2": {"definition": "mode(a2)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "modea2"}, "mode1": {"definition": "mode[0]", "description": "

Mode as a value.

", "group": "final list", "templateType": "anything", "name": "mode1"}, "modetimes": {"definition": "map(\nlen(filter(x=j,x,a)),\nj, 0..8)", "description": "

The vector of number of times of each value in the data.

", "group": "final list", "templateType": "anything", "name": "modetimes"}, "modea1": {"definition": "mode(a1)", "description": "", "group": "Ungrouped variables", "templateType": "anything", "name": "modea1"}, "a2": {"definition": "repeat(random(0..8), 20)", "description": "

Option 2 for the list. Only used if there is only one mode and option 1 was not used.

", "group": "Ungrouped variables", "templateType": "anything", "name": "a2"}, "as": {"definition": "sort(a)", "description": "", "group": "final list", "templateType": "anything", "name": "as"}, "a1": {"definition": "repeat(random(0..8), 20)", "description": "

Option 1 for the list. Only used if there is only one mode.

", "group": "Ungrouped variables", "templateType": "anything", "name": "a1"}, "median": {"definition": "median(a)", "description": "", "group": "final list", "templateType": "anything", "name": "median"}, "mean": {"definition": "mean(a)", "description": "", "group": "final list", "templateType": "anything", "name": "mean"}, "a": {"definition": "if(len(modea1) = 1, a1, if(len(modea2) = 1, a2, a3))", "description": "

The final list.

", "group": "final list", "templateType": "anything", "name": "a"}, "mode": {"definition": "mode(a)", "description": "

Mode as a vector.

", "group": "final list", "templateType": "anything", "name": "mode"}, "a3": {"definition": "shuffle([ random(0..1),\n 2, \n random(4..6),\n random(0..3 except 2), \n random(0..3 except 2),\n random(4..6),\n 2,\n 2,\n random(4..6),\n random(7..8),\n random(0..3 except 2 except 1), \n random(4..6),\n 2,\n random(1..3 except 2), \n random(7..8),\n 2,\n random(7..8),\n random(4..6), \n random(0..3 except 2), \n 2\n])", "description": "

Option 3 for the list. Ensures there is only one mode (2) while still randomising the data.

", "group": "Ungrouped variables", "templateType": "anything", "name": "a3"}, "sd": {"definition": "precround(stdev(a,true),2)", "description": "

Sample standard deviation

", "group": "final list", "templateType": "anything", "name": "sd"}}, "ungrouped_variables": ["modea1", "modea2", "a1", "a2", "a3"], "variable_groups": [{"name": "final list", "variables": ["a", "mean", "median", "mode", "mode1", "modetimes", "sd", "as"]}], "name": "Calculate descriptive statistics for a sample", "variablesTest": {"maxRuns": 100, "condition": ""}, "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Mario Orsi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/427/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Mario Orsi", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/427/"}, {"name": "Stanislav Duris", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1590/"}]}