// Numbas version: finer_feedback_settings {"name": "Simon's copy of Laplace of constants and powers of t", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"condition": "", "maxRuns": 100}, "extensions": [], "parts": [{"marks": 1, "checkVariableNames": false, "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "answer": "{a}/s", "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "unitTests": [], "failureRate": 1, "checkingAccuracy": 0.001, "type": "jme", "prompt": "
Find $L[\\var{a} ]$.
", "expectedVariableNames": [], "showPreview": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "checkVariableNames": false, "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "answer": "{b}/s^2", "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "unitTests": [], "failureRate": 1, "checkingAccuracy": 0.001, "type": "jme", "prompt": "Find $L[\\var{b}t ]$.
", "expectedVariableNames": [], "showPreview": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "checkVariableNames": false, "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "answer": "{a}/s+{b}/s^2", "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "unitTests": [], "failureRate": 1, "checkingAccuracy": 0.001, "type": "jme", "prompt": "Find $L[\\var{a}+\\var{b}t ]$.
", "expectedVariableNames": [], "showPreview": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "checkVariableNames": false, "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "answer": "fact({a})/s^{a+1}", "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "unitTests": [], "failureRate": 1, "checkingAccuracy": 0.001, "type": "jme", "prompt": "Find $L[t^\\var{a}]$.
", "expectedVariableNames": [], "showPreview": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}, {"marks": 1, "checkVariableNames": false, "vsetRange": [0, 1], "scripts": {}, "showCorrectAnswer": true, "variableReplacements": [], "answer": "({a}*(fact({c})))/s^{c+1}+({b}*(fact({d})))/s^{d+1}", "checkingType": "absdiff", "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "unitTests": [], "failureRate": 1, "checkingAccuracy": 0.001, "type": "jme", "prompt": "Find $L[\\var{a}t^\\var{c}+\\var{b}t^\\var{d}]$.
", "expectedVariableNames": [], "showPreview": true, "customMarkingAlgorithm": "", "showFeedbackIcon": true, "variableReplacementStrategy": "originalfirst"}], "name": "Simon's copy of Laplace of constants and powers of t", "statement": "Use the following standard Laplace transform results in the questions below:
\n$L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)]$ (Linearity)
\n$L[k]=\\frac{k}{s}$
\n$L[t]=\\frac{1}{s^2}$
\n$L[t^n]=\\frac{n!}{s^{n+1}}$
\n", "functions": {}, "ungrouped_variables": ["a", "c", "b", "d"], "variables": {"a": {"definition": "random(1..9#1)", "description": "", "group": "Ungrouped variables", "templateType": "randrange", "name": "a"}, "b": {"definition": "random(2..9#1)", "description": "", "group": "Ungrouped variables", "templateType": "randrange", "name": "b"}, "c": {"definition": "random(2..5#1)", "description": "", "group": "Ungrouped variables", "templateType": "randrange", "name": "c"}, "d": {"definition": "random(6..9#1)", "description": "", "group": "Ungrouped variables", "templateType": "randrange", "name": "d"}}, "advice": "(a)
\n$L[k]=\\frac{k}{s}$
\nHence $L[\\var{a} ]=\\frac{\\var{a}}{s}$.
\n\n(b)
\n\nNote $L[\\var{b}t ]=\\var{b}L[t]$ by linearity
\n\nNow we use $L[t]=\\frac{1}{s^2}$ to obtain:
\n$L[\\var{b}t ]=\\var{b}L[t]=\\var{b}\\frac{1}{s^2} =\\frac{\\var{b}}{s^2}$
\n\n(c)
\nUse linearity to obtain
\n$L[\\var{a}+\\var{b}t ]=L[\\var{a}]+L[\\var{b}t ]=\\frac{\\var{a}}{s}+\\frac{\\var{b}}{s^2}$ using our results from parts (a) and (b)
\n\n(d)
\nWe use $L[t^n]=\\frac{n!}{s^{n+1}}$
\nHence $L[t^\\var{a}]=\\frac{\\var{a}!}{s^{\\var{a}+1}}=\\simplify{{a}!/(s^({a}+1))}$.
\n\n(e)
\nBy linearity, $L[\\var{a}t^\\var{c}+\\var{b}t^\\var{d}]=\\var{a}L[t^\\var{c}]+\\var{b}L[t^\\var{d}]$.
\nNow we use $L[t^n]=\\frac{n!}{s^{n+1}}$ to obtain
\n$L[\\var{a}t^\\var{c}+\\var{b}t^\\var{d}]=\\var{a}L[t^\\var{c}]+\\var{b}L[t^\\var{d}]= \\var{a}\\times \\frac{\\var{c}!}{s^{\\var{c}+1}} +\\var{b} \\times \\frac{\\var{d}!}{s^{\\var{d}+1}}=\\frac{\\var{a}\\times\\var{c}!}{s^{\\var{c+1}}}+\\frac{\\var{b} \\times\\var{d}!}{s^{\\var{d+1}}}$
", "tags": [], "metadata": {"description": "Laplace of constants and powers of t
\nrebelmaths
", "licence": "Creative Commons Attribution 4.0 International"}, "preamble": {"js": "", "css": ""}, "rulesets": {}, "variable_groups": [], "type": "question", "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}]}], "contributors": [{"name": "Julie Crowley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/113/"}, {"name": "Simon Thomas", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3148/"}]}