// Numbas version: finer_feedback_settings {"name": "Blathnaid's copy of Simon's copy of Laws of Indices", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"rulesets": {}, "statement": "
Using the laws of indices, simplify each expression down to its simplest form. Recall that $a^{0} = 1$ for any number $a$.
", "variable_groups": [], "ungrouped_variables": ["x", "y", "c", "d", "p", "q", "b", "g"], "preamble": {"css": "", "js": ""}, "extensions": [], "parts": [{"showFeedbackIcon": true, "unitTests": [], "type": "gapfill", "customName": "", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "customMarkingAlgorithm": "", "prompt": "Write $a^{\\var{x}} \\times a^{\\var{y}}$ as a single power of $a$.
\n\n$a^{\\var{x}} \\times a^{\\var{y}} =$ [[0]].
", "useCustomName": false, "adaptiveMarkingPenalty": 0, "gaps": [{"type": "jme", "adaptiveMarkingPenalty": 0, "valuegenerators": [{"name": "a", "value": ""}], "showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "checkingType": "absdiff", "showPreview": true, "marks": "2", "musthave": {"strings": ["^"], "showStrings": true, "message": "You must write your answer as a single power of a.
", "partialCredit": 0}, "showFeedbackIcon": true, "unitTests": [], "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "scripts": {"mark": {"order": "after", "script": "// Parse the student's answer as a syntax tree\nvar studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// we just want two sets of brackets, each containing two terms\n// or one of the brackets might not have a constant term\n// or for repeated roots, you might write (x+a)^2\nvar rule = Numbas.jme.compile('m_any(a^(m_number))');\n\n// Check the student's answer matches the pattern. \nvar m = Numbas.jme.display.matchTree(rule,studentTree,true);\n// If not, take away marks\nif(!m) {\n this.multCredit(0,'You haven\\'t simplified: your answer is not in the form $\\a^?$.');\n}"}}, "notallowed": {"strings": ["*", "(", ")", "+"], "showStrings": true, "message": "You must write your answer as a single power of a.
", "partialCredit": 0}, "failureRate": 1, "checkVariableNames": false, "checkingAccuracy": 0.001, "useCustomName": false, "customName": "", "answer": "a^{x+y}"}], "marks": 0, "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": []}, {"showFeedbackIcon": true, "unitTests": [], "type": "gapfill", "customName": "", "showCorrectAnswer": true, "extendBaseMarkingAlgorithm": true, "scripts": {}, "customMarkingAlgorithm": "", "prompt": "Write $\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}$ as an integer multiplied by a single power of $a$.
\n$\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q} =$ [[0]].
\n", "useCustomName": false, "adaptiveMarkingPenalty": 0, "gaps": [{"type": "jme", "adaptiveMarkingPenalty": 0, "valuegenerators": [{"name": "a", "value": ""}], "showCorrectAnswer": true, "customMarkingAlgorithm": "", "variableReplacements": [], "extendBaseMarkingAlgorithm": true, "vsetRangePoints": 5, "checkingType": "absdiff", "showPreview": true, "marks": "2", "musthave": {"strings": ["^"], "showStrings": true, "message": "You must write your answer as a number multiplied by a single power of a.
", "partialCredit": 0}, "showFeedbackIcon": true, "unitTests": [], "vsetRange": [0, 1], "variableReplacementStrategy": "originalfirst", "scripts": {"mark": {"order": "after", "script": "// Parse the student's answer as a syntax tree\nvar studentTree = Numbas.jme.compile(this.studentAnswer,Numbas.jme.builtinScope);\n\n// Create the pattern to match against \n// we just want two sets of brackets, each containing two terms\n// or one of the brackets might not have a constant term\n// or for repeated roots, you might write (x+a)^2\nvar rule = Numbas.jme.compile('m_any((m_number)*a^(m_number))');\n\n// Check the student's answer matches the pattern. \nvar m = Numbas.jme.display.matchTree(rule,studentTree,true);\n// If not, take away marks\nif(!m) {\n this.multCredit(0,'You haven\\'t simplified: your answer is not in the form $\\?a^?$.');\n}"}}, "notallowed": {"strings": ["(", ")"], "showStrings": true, "message": "You must write your answer as a number multiplied by a single power of a.
", "partialCredit": 0}, "failureRate": 1, "checkVariableNames": false, "checkingAccuracy": 0.001, "useCustomName": false, "customName": "", "answer": "{c*d}*a^{p+q}"}], "marks": 0, "sortAnswers": false, "variableReplacementStrategy": "originalfirst", "variableReplacements": []}], "functions": {}, "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "This question aims to test understanding and ability to use the laws of indices.
"}, "variables": {"y": {"templateType": "anything", "name": "y", "description": "\nUsed in parts a,c and f
", "group": "Ungrouped variables", "definition": "random(2..6)"}, "x": {"templateType": "anything", "name": "x", "description": "Used in parts a,c and e
", "group": "Ungrouped variables", "definition": "random(2..9 except y)"}, "b": {"templateType": "anything", "name": "b", "description": "Used in part c
", "group": "Ungrouped variables", "definition": "random(2..9)"}, "c": {"templateType": "anything", "name": "c", "description": "Used in parts b,d and f
", "group": "Ungrouped variables", "definition": "random(2,4)"}, "g": {"templateType": "anything", "name": "g", "description": "Used in part c
", "group": "Ungrouped variables", "definition": "random(2..9 except b)"}, "p": {"templateType": "anything", "name": "p", "description": "Used in parts b and d
", "group": "Ungrouped variables", "definition": "random(2..9)"}, "d": {"templateType": "anything", "name": "d", "description": "Used in parts b and e
", "group": "Ungrouped variables", "definition": "random(3..5)"}, "q": {"templateType": "anything", "name": "q", "description": "Used in parts b,d and f
", "group": "Ungrouped variables", "definition": "random(3,5)"}}, "name": "Blathnaid's copy of Simon's copy of Laws of Indices", "tags": [], "advice": "Here we are using the rule of indices: $a^m \\times a^n = a^{m+n}$.
\nUsing this rule,
\n\\[
\\begin{align}
a^\\var{x} \\times a^\\var{y}\\ &= a^\\simplify[all, !collectNumbers]{{x}+{y}}\\\\
&= a^\\var{x+y}.
\\end{align}
\\]
We are asked to find $\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}$.
\nNotice there is a constant in front of each of the terms.
\nTo do this, write the product out explicitly, as
\n\\[\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q} = \\var{c} \\times \\var{d} \\times a^\\var{p} \\times a^\\var{q}.\\]
\nWe know that $\\var{c} \\times \\var{d} = \\var{c*d}$, and using the rule of indices: $a^\\var{p} \\times a^\\var{q} = a^\\var{p+q}$.
\nTherefore:
\n\\begin{align}
\\var{c}a^\\var{p} \\times \\var{d}a^\\var{q}&= \\var{c*d} \\times a^\\var{p+q} \\\\
&= \\simplify{{c*d}*a^{p+q}}.
\\end{align}
Here we are using: $a^m \\div a^n = a^{m-n}$.
\nWe are asked to simplify the expression, $\\displaystyle\\simplify{{b}*a^{x}/({g}*a^{y})}$.
\nTo do this, we just have to use the previously mentioned rule of indices.
\nStart by writing the expression as
\n\\[\\simplify{{b}*a^{x}/({g}*a^{y})} = \\simplify{{b}/{g}} \\times \\frac{\\simplify{a^{x}}}{{\\simplify{(a^{y})}}}.\\]
\nUsing rules of indices,
\n\\begin{align} \\frac{a^\\var{x}}{a^\\var{y}} &= a^\\var{x} \\div a^\\var{y}\\\\
&= a^\\simplify[all, !collectNumbers]{{x}-{y}}\\\\
&= a^\\var{x-y}.
\\end{align}
Therefore,
\n\\begin{align}
\\frac{\\var{b}a^\\var{x}}{\\var{g}a^\\var{y}} &= \\simplify{{b}/{g}} \\times \\simplify{a^{{x}-{y}}}\\\\
&= \\simplify{{b}/{g}*a^{x-y}}.
\\end{align}
The question asks us to simplify $(\\simplify{{c}*a^{p}})^{\\var{q}}$.
\nTo do this we use the rules:
\n\\[(ab)^m = a^mb^m.\\]
\n\\[(a^{m})^{n} = a^{mn},\\]
\nUsing the first of these rules we obtain:
\n\\[(\\simplify{{c}*a^{p}})^{\\var{q}}= \\var{c}^{\\var{q}} \\times (a^{\\var{p}})^{\\var{q}}.\\]
\nThen using the second rule gives:
\n\\[
\\begin{align}
(\\simplify{{c}*a^{p}})^{\\var{q}}&= \\simplify{{c}^{q}} \\times a^\\var{p*q}\\\\
&= \\simplify{{c}^{q}*a^{p*q}}.
\\end{align}
\\]
The question asks us to simplify $\\sqrt[\\var{d}]{a}$.
\nTo do this we use the rule:
\n\\[a^\\frac{1}{m} = \\sqrt[m]{a},\\]
\nWe can expand the expression as follows:
\n\\[
\\begin{align}
\\sqrt[\\var{d}]{a} &= (\\simplify{a})^\\frac{1}{\\var{d}}\\\\
&= a^\\frac{1}{\\var{d}}.
\\end{align}
\\]
The question requires us to simplify $\\sqrt[\\var{c}]{a^\\var{q}}$.
\nHere, we use the rule of indices: $a^\\frac{n}{m} = \\sqrt[m]{a^n}$, allowing us to expand the expression as follows:
\n\\[
\\begin{align}
\\sqrt[\\var{c}]{\\simplify{a^{q}}} &= \\simplify[fractionnumbers,all]{(a^{q})^{{1}/{{c}}}}\\\\
&= \\simplify[fractionnumbers,all]{a^{{q}/{c}}}.
\\end{align}
\\]