// Numbas version: finer_feedback_settings {"name": "Blathnaid's copy of Applications of differentiation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"parts": [{"scripts": {}, "gaps": [{"mustBeReduced": false, "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "maxValue": "-g/(2*f)", "precisionType": "dp", "precisionMessage": "

You have not given your answer to the correct precision.

", "showCorrectAnswer": true, "marks": 1, "showFeedbackIcon": true, "correctAnswerFraction": false, "showPrecisionHint": false, "precision": "2", "customMarkingAlgorithm": "", "scripts": {}, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "-g/(2*f)", "unitTests": [], "type": "numberentry", "variableReplacements": []}, {"mustBeReduced": false, "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "maxValue": "g^2/(4*f)-g^2/(2*f)+h", "precisionType": "dp", "precisionMessage": "

You have not given your answer to the correct precision.

", "showCorrectAnswer": true, "marks": 1, "showFeedbackIcon": true, "correctAnswerFraction": false, "showPrecisionHint": false, "precision": "2", "customMarkingAlgorithm": "", "scripts": {}, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "g^2/(4*f)-g^2/(2*f)+h", "unitTests": [], "type": "numberentry", "variableReplacements": []}, {"scripts": {}, "failureRate": 1, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkVariableNames": false, "vsetRangePoints": 5, "expectedVariableNames": [], "vsetRange": [0, 1], "answer": "2*{f}*x+{g}", "showPreview": true, "showCorrectAnswer": true, "marks": 1, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "type": "jme", "checkingAccuracy": 0.001, "variableReplacements": [], "customMarkingAlgorithm": ""}, {"scripts": {}, "failureRate": 1, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkVariableNames": false, "vsetRangePoints": 5, "expectedVariableNames": [], "vsetRange": [0, 1], "answer": "2*{f}", "showPreview": true, "showCorrectAnswer": true, "marks": 1, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "type": "jme", "checkingAccuracy": 0.001, "variableReplacements": [], "customMarkingAlgorithm": ""}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "unitTests": [], "displayType": "radiogroup", "maxMarks": "0", "showCellAnswerState": true, "choices": ["

maximum

", "

minimum

"], "showCorrectAnswer": true, "displayColumns": 0, "marks": 0, "showFeedbackIcon": true, "minMarks": 0, "extendBaseMarkingAlgorithm": true, "type": "1_n_2", "matrix": ["if(maximum, 1, 0)", "if(maximum, 0, 1)"], "shuffleChoices": false, "variableReplacements": [], "distractors": ["", ""], "customMarkingAlgorithm": ""}], "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "type": "gapfill", "prompt": "

Find the coordinates of the turning point of the function below and state whether it is a maximum or a minimum point. Give your answers to $2$ decimal places where necessary.

\n

$y=\\simplify {{f}x^2+{g}x+{h}}$

\n

Firstly, find the first and second derivatives $y$.

\n

$\\displaystyle \\frac{dy}{dx}=$ [[2]]

\n

$\\displaystyle \\frac{d^2y}{dx^2}=$ [[3]]

\n

\n

Secondly, find $x$ such that $\\displaystyle \\frac{dy}{dx}=0$.

\n

$x$-coordinate of the turning point $=$ [[0]]

\n

$y$-coordinate of the turning point $=$ [[1]]

\n

The turning point is a [[4]]

\n

\n

", "variableReplacements": [], "sortAnswers": false, "customMarkingAlgorithm": ""}, {"scripts": {}, "gaps": [{"scripts": {}, "failureRate": 1, "checkingType": "absdiff", "variableReplacementStrategy": "originalfirst", "unitTests": [], "checkVariableNames": false, "vsetRangePoints": 5, "expectedVariableNames": [], "vsetRange": [0, 1], "answer": "{z}-2*{w}*t", "showPreview": true, "showCorrectAnswer": true, "marks": 1, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "type": "jme", "checkingAccuracy": 0.001, "variableReplacements": [], "customMarkingAlgorithm": ""}, {"mustBeReduced": false, "strictPrecision": false, "variableReplacementStrategy": "originalfirst", "maxValue": "z^2/(4w)", "precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "showCorrectAnswer": true, "marks": 1, "showFeedbackIcon": true, "correctAnswerFraction": false, "showPrecisionHint": false, "precision": "2", "customMarkingAlgorithm": "", "scripts": {}, "extendBaseMarkingAlgorithm": true, "mustBeReducedPC": 0, "correctAnswerStyle": "plain", "precisionPartialCredit": 0, "allowFractions": false, "notationStyles": ["plain", "en", "si-en"], "minValue": "z^2/(4w)", "unitTests": [], "type": "numberentry", "variableReplacements": []}], "variableReplacementStrategy": "originalfirst", "unitTests": [], "showCorrectAnswer": true, "marks": 0, "showFeedbackIcon": true, "extendBaseMarkingAlgorithm": true, "type": "gapfill", "prompt": "

An unpowered missile is launched vertically from the ground.

\n

At a time $t$ seconds after the instant of projection, its height, $y$ metres, above the ground is given by the formula

\n

\\[ y=\\var{z}t-\\var{w}t^2. \\]

\n

Calculate the maximum height reached by the missile.

\n

Firstly, differentiate.

\n

$\\displaystyle \\frac{dy}{dt}=$ [[0]]

\n

Now use this result and your knowledge of differentiation to find the maximum height of the missile, rounding your answer to $2$ decimal places.

\n

$y=$ [[1]]

", "variableReplacements": [], "sortAnswers": false, "customMarkingAlgorithm": ""}], "variables": {"b": {"group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "b", "templateType": "anything"}, "h": {"group": "Ungrouped variables", "definition": "random(0..5#0.5)", "description": "", "name": "h", "templateType": "randrange"}, "g": {"group": "Ungrouped variables", "definition": "random(-10..10#1)", "description": "", "name": "g", "templateType": "randrange"}, "f": {"group": "Ungrouped variables", "definition": "random(-10..10#1)", "description": "", "name": "f", "templateType": "randrange"}, "z": {"group": "Ungrouped variables", "definition": "random(20..30#0.5)", "description": "", "name": "z", "templateType": "randrange"}, "t": {"group": "Ungrouped variables", "definition": "random(0..1#0.1)", "description": "", "name": "t", "templateType": "randrange"}, "a": {"group": "Ungrouped variables", "definition": "random(0..10#0.5)", "description": "", "name": "a", "templateType": "randrange"}, "d": {"group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "name": "d", "templateType": "anything"}, "c": {"group": "Ungrouped variables", "definition": "random(2..7)", "description": "", "name": "c", "templateType": "anything"}, "maximum": {"group": "Ungrouped variables", "definition": "f<0", "description": "

Is the stationary point a maximum?

", "name": "maximum", "templateType": "anything"}, "w": {"group": "Ungrouped variables", "definition": "random(2..5#0.1)", "description": "", "name": "w", "templateType": "randrange"}}, "functions": {}, "variablesTest": {"condition": "", "maxRuns": 100}, "advice": "

Parts A and B

\n

Here, the question takes you throught the stages needed to find the solution. The reason we differentiate is that the derivative of a function tells us its gradient at a given point, and we want to find where the function has gradient zero because when the gradient is zero we either have a maximum or a minimum point.

\n

Part C

\n

The first part of this question is similar to parts A and B. The tricky bit is the second part! You need to work out the value of $t$ that produces the maximum piont but that is not the final answer - you need to use that value of $t$ to find the maximum height, which you do by substituting $t$ into the original function to find $y$.

", "statement": "", "name": "Blathnaid's copy of Applications of differentiation", "extensions": [], "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": ""}, "preamble": {"js": "", "css": ""}, "tags": [], "ungrouped_variables": ["z", "c", "b", "d", "f", "w", "a", "g", "h", "t", "maximum"], "rulesets": {"std": ["all", "fractionNumbers"]}, "variable_groups": [], "type": "question", "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}, {"name": "Vicky Hall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/659/"}]}]}], "contributors": [{"name": "Blathnaid Sheridan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/447/"}, {"name": "Vicky Hall", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/659/"}]}